COGNIHERD: Livestock Health Monitoring Using Artificial Intelligence (AI) and Internet of Things (IoT)

Authors

  • Gurjant Singh MSc. Botany & PGD AI in Agriculture, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143102, India https://orcid.org/0009-0003-6985-7619

Keywords:

CogniHerd, Livestock health monitoring, Artificial Intelligence, Internet of Things, Anomaly Detection, Predictive Modeling, ESP8266, Arduino Uno, Sustainable Agriculture, XAI

Abstract

The amalgamation of Artificial Intelligence (AI) and Internet of Things (IoT) technologies is revolutionising livestock health monitoring, offering novel ways to improve animal welfare and productivity. This document introduces the CogniHerd system. “CogniHerd amalgamates two root words: “Cogni,” derived from the Latin “cognitio,” signifying knowledge or awareness, which embodies the AI-driven intelligence and data analysis within the system, and “Herd,” originating from the Old English “heord,” denoting a collective of domesticated animals. CogniHerd represents the astute management and surveillance of livestock with AI and IoT technologies to enhance health and welfare, employing an ESP8266, Arduino Uno, audio sensors, temperature sensors, and video sensors for real-time health monitoring of animals. The system gathers essential measurements, encompassing physiological factors and behavioural data. CogniHerd employs advanced AI methodologies, including anomaly detection and predictive modelling, to facilitate the early diagnosis of health issues, hence enhancing informed decision-making. A case study of a participating farm illustrates the system’s efficacy in identifying health anomalies and enhancing livestock management, attaining an accuracy of 0.9. The study also examines issues with data privacy, infrastructure demands, and interoperability. The findings underscore the CogniHerd system’s capacity to augment conventional cattle management approaches, facilitating sustainable agriculture via enhanced health monitoring and proactive interventions.

Downloads

Download data is not yet available.

References

Abubakar, M., Iqbal, A., Manzoor, S., & Javed Arshed, M. (2020). Introductory Chapter: Livestock Health and Farming – Regional to Global Perspectives. IntechOpen. Doi: 10.5772/intechopen.91679

Rasu, Eeswaran. Et al., (2022). Current and Future Challenges and Opportunities for Livestock Farming in West Africa: Perspectives from the Case of Senegal. Multidisciplinary Digital Publishing Institute. 12(8), 1818; Doi: https://doi.org/10.3390/agronomy12081818

Villarroel, Aurora & McDonald, Stephen & Walker, William & Lana, Kaiser & Dewell, Renee & Dewell, Grant. (2010). Shortage of Rural Veterinarians: Real or Perceived?. Online Journal of Rural Research & Policy. 5. 10.4148/ojrrp.v5i7.269.

Sardar, Muhammad & Khan, Muhammad & Salman, Muhammad & Ullah, Imran. (2023). Farm animal welfare as a key element of sustainable food production: Animal welfare and sustainable food production. Letters In Animal Biology. 3. 01-08. 10.62310/liab.v3i2.116.

Habeeb AA, Osman SF, Teama FEI, Gad AE. The detrimental impact of high environmental temperature on physiological response, growth, milk production, and reproductive efficiency of ruminants. Trop Anim Health Prod. 2023 Nov 1;55(6):388. Doi: 10.1007/s11250-023-03805-y. PMID: 37910293; PMCID: PMC10620265.

Chaudhry, Abdul & Mumtaz, Rafia & Zaidi, Syed & Tahir, Muhammad & School, Syed. (2020). Internet of Things (IoT) and Machine Learning (ML) enabled Livestock Monitoring. 151-155. 10.1109/HONET50430.2020.9322666.

Wei-Hsun Wang & Wen-Shin Hsu. (2023). Integrating Artificial Intelligence and Wearable IoT System in Long-Term Care Environments. Multidisciplinary Digital Publishing Institute. 23(13), 5913; Doi: https://doi.org/10.3390/s23135913

Sk Injamamul Islam. Et al., (2024). Cutting-edge technologies for detecting and controlling fish diseases: Current status, outlook, and challenges. Journal of the World Aquaculture Society. Volume 55, Issue 2. Doi: https://doi.org/10.1111/jwas.13051

Wassie, Awoke & Aseged, Tesfalem & Shitaw, Takele. (2024). The Influence of Artificial Intelligence Technology on the Management of Livestock Farms. International Journal of Distributed Sensor Networks. 2024. 1-12. 10.1155/2024/8929748.

Muhammad Osama Akbar. Et al., (2020). IoT for Development of Smart Dairy Farming. Journal of Food Quality. Vol. 2020, Issue 1. Doi: https://doi.org/10.1155/2020/4242805

Abreu, C. & van Deventer, Jacobus. (2022). The Application of Artificial Intelligence (AI) and Internet of Things (IoT) in Agriculture: A Systematic Literature Review. 10.1007/978-3-030-95070-5_3.

Curti PF, Selli A, Pinto DL, Merlos-Ruiz A, Balieiro JCC, Ventura RV. Applications of livestock monitoring devices and machine learning algorithms in animal production and reproduction: an overview. Anim Reprod. 2023 Aug 28;20(2):e20230077. Doi: 10.1590/1984-3143-AR2023-0077. PMID: 37700909; PMCID: PMC10494883

AlZubi Ali Ahmad, Al-Zu’bi Maha (2023). Application of Artificial Intelligence in Monitoring of Animal Health and Welfare . Indian Journal of Animal Research. 57(11): 1550-1555. Doi: 10.18805/IJAR.BF-1698.

Wassie, Awoke & Aseged, Tesfalem & Shitaw, Takele. (2024). The Influence of Artificial Intelligence Technology on the Management of Livestock Farms. International Journal of Distributed Sensor Networks. 2024. 1-12. 10.1155/2024/8929748.

R., Balamurugan & Alagarsamy, Manjunathan. (2023). IoT based tracking cattle healthmonitoring system using wireless sensors. Bulletin of Electrical Engineering and Informatics. 12. 3086-3094. 10.11591/eei.v12i5.4610.

Unold O, Nikodem M, Piasecki M, Szyc K, Maciejewski H, Bawiec M, Dobrowolski P, Zdunek M. IoT-Based Cow Health Monitoring System. Computational Science – ICCS 2020. 2020 May 25;12141:344–56. Doi: 10.1007/978-3-030-50426-7_26. PMCID: PMC7302546.

Ding, Mike & Mahadasa, Ravikiran. (2019). Evolution of Smart Farming: Integrating IoT and AI in Agricultural Engineering. Global Disclosure of Economics and Business. 8. 165-178. 10.18034/gdeb.v8i2.714.

Neethirajan, S. Artificial Intelligence and Sensor Innovations: Enhancing Livestock Welfare with a Human-Centric Approach. Hum-Cent Intell Syst 4, 77–92 (2024). https://doi.org/10.1007/s44230-023-00050-2

Darvesh, Karthik & Khande, N. & Avhad, S. & Khemchandani, M.. (2023). IOT and AI based smart cattle health monitoring. Journal of Livestock Science. 14. 211-218. 10.33259/JLivestSci.2023.211-218.

Hussein, Abbas & Mohammed, Aymen & Al-Jawahry, Hassan. (2024). AI and IoT in Farming: A Sustainable Approach. E3S Web of Conferences. 491. 10.1051/e3sconf/202449101020.

Kushagra Sharma, Shiv Kumar Shivandu, Integrating artificial intelligence and Internet of Things (IoT) for enhanced crop monitoring and management in precision agriculture, Sensors International, Volume 5, 2024, 100292, ISSN 2666-3511, https://doi.org/10.1016/j.sintl.2024.100292.

Coghlan, S., Quinn, T. Ethics of using artificial intelligence (AI) in veterinary medicine. AI & Soc 39, 2337–2348 (2024). https://doi.org/10.1007/s00146-023-01686-1

Li, Zhang. Et al., (2023). Advancements in artificial intelligence technology for improving animal welfare: Current applications and research progress. Animal Research and One Health. Volume 2, Issue 1. P. 93-109. https://doi.org/10.1002/aro2.44

Dixit, Sheetal & Jain, Rahul & B., Patel. (2024). Impact of 5G Wireless Technologies on Cloud Computing and Internet of Things (IOT). 2. 10.23880/art-16000107.

Aleluia, Vitor & Soares, Vasco & Caldeira, João & Rodrigues, António. (2022). Livestock Monitoring: Approaches, Challenges and Opportunities. International Journal of Engineering and Advanced Technology. 11. 67-76. 10.35940/ijeat.D3458.0411422.

Pengguang, He. Et al., (2022). Research Progress in the Early Warning of Chicken Diseases by Monitoring Clinical Symptoms. Multidisciplinary Digital Publishing Institute. 12(11), 5601; https://doi.org/10.3390/app12115601

Shajari S, Kuruvinashetti K, Komeili A, Sundararaj U. The Emergence of AI-Based Wearable Sensors for Digital Health Technology: A Review. Sensors (Basel). 2023 Nov 29;23(23):9498. Doi: 10.3390/s23239498. PMID: 38067871; PMCID: PMC10708748.

Dayoub, Moammar & Shnaigat, Saida & Tarawneh, Radi & Yacoub, Azzam & Faisal, Al Barakeh & Al-Najjar, Khaled. (2024). Enhancing Animal Production through Smart Agriculture: Possibilities, Hurdles, Resolutions, and Advantages. Ruminants. 4. 22-46. 10.3390/ruminants4010003.

Neethirajan, Suresh & Tuteja, Dr Satish & Huang, Sheng-Tung & Kelton, David. (2017). Recent Advancement in Biosensors Technology for Animal and Livestock Health Management. Biosensors and Bioelectronics. 98. 10.1016/j.bios.2017.07.015.

Linas, Saikevičius. Et al., (2024). Non-Contact Vision-Based Techniques of Vital Sign Monitoring: Systematic Review. Multidisciplinary Digital Publishing Institute. 24(12), 3963; https://doi.org/10.3390/s24123963

K. Darvesh, N. Khande, S. Avhad, M. Khemchandani. (2023). IOT and AI based smart cattlehealth monitoring. Journal of Livestock Science (ISSN online 2277-6214). Vol. 14: 211-218. Doi. 10.33259/JLivestSci.2023.211-218

Vourc’h G, Bridges VE, Gibbens J, De Groot BD, McIntyre L, Poland R, Barnouin J. Detecting emerging diseases in farm animals through clinical observations. Emerg Infect Dis. 2006 Feb;12(2):204-10. Doi: 10.3201/eid1202.050498. Erratum in: Emerg Infect Dis. 2006 Apr;12(4):714. PMID: 16494743; PMCID: PMC3293432.

Papakonstantinou, Georgios I., Nikolaos Voulgarakis, Georgia Terzidou, Lampros Fotos, Elisavet Giamouri, and Vasileios G. Papatsiros. 2024. “Precision Livestock Farming Technology: Applications and Challenges of Animal Welfare and Climate Change” Agriculture 14, no. 4: 620. https://doi.org/10.3390/agriculture14040620

Papst, Franz & Saukh, Olga & Römer, Kay & Grandl, Florian & Jakovljevic, Igor & Steininger, Franz & Mayerhofer, Martin & Duda, Jürgen & Egger-Danner, Christa. (2019). Embracing Opportunities of Livestock Big Data Integration with Privacy Constraints. IoT 2019: Proceedings of the 9th International Conference on the Internet of Things. 1-4. 10.1145/3365871.3365900.

Aleluia, Vitor & Soares, Vasco & Caldeira, João & Rodrigues, António. (2022). Livestock Monitoring: Approaches, Challenges and Opportunities. International Journal of Engineering and Advanced Technology. 11. 67-76. 10.35940/ijeat.D3458.0411422.

Guitian J, Arnold M, Chang Y, Snary EL. Applications of machine learning in animal and veterinary public health surveillance. Rev Sci Tech. 2023 May;42:230-241. English. Doi: 10.20506/rst.42.3366. PMID: 37232301.

Swain, Satyaprakash. (2024). Smart livestock management: integrating IoT for cattle health diagnosis and disease prediction through machine learning. Indonesian Journal of Electrical Engineering and Computer Science. 34. 10.11591/ijeecs.v34.i2.pp1192-1203.

Gorelick MH. Bias arising from missing data in predictive models. J Clin Epidemiol. 2006 Oct;59(10):1115-23. Doi: 10.1016/j.jclinepi.2004.11.029. PMID: 16980153.

R. Thiyagarajan., et al., (2024). A novel approach for missing data recovery and fault nodes detection in wireless sensor networks. International Journal of Communication Systems. Vol. 37, Issue 17. Doi: https://doi.org/10.1002/dac.5924

Swain, Satyaprakash & Pattnayak, Binod & Mohanty, Mihir & Jayasingh, Suvendra & Patra, Kumar & Panda, Chittaranjan. (2024). Smart livestock management: integrating IoT for cattle health diagnosis and disease prediction through machine learning. Indonesian Journal of Electrical Engineering and Computer Science. 34. 1192-1203.

A.A. Chaudhry, R. Mumtaz, S. M. Hassan Zaidi, M. A. Tahir and S. H. Muzammil School, “Internet of Things (IoT) and Machine Learning (ML) enabled Livestock Monitoring,” 2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET), Charlotte, NC, USA, 2020, pp. 151-155, doi: 10.1109/HONET50430.2020.9322666.

García, Rodrigo & Aguilar, Jose & Pinto, Angel & Toro, Mauricio. (2020). A systematic literature review on the use of machine learning in precision livestock farming. Computers and Electronics in Agriculture. 179. 10.1016/j.compag.2020.105826.

Bohr A, Memarzadeh K. The rise of artificial intelligence in healthcare applications. Artificial Intelligence in Healthcare. 2020:25–60. Doi: 10.1016/B978-0-12-818438-7.00002-2. Epub 2020 Jun 26. PMCID: PMC7325854.

AlZubi Ali Ahmad (2023). Artificial Intelligence and its Application in the Prediction and Diagnosis of Animal Diseases: A Review . Indian Journal of Animal Research. 57(10): 1265-1271. Doi: 10.18805/IJAR.BF-1684.

Neethirajan, S. Artificial Intelligence and Sensor Innovations: Enhancing Livestock Welfare with a Human-Centric Approach. Hum-Cent Intell Syst 4, 77–92 (2024). https://doi.org/10.1007/s44230-023-00050-2

Abdulmalek S, Nasir A, Jabbar WA, Almuhaya MAM, Bairagi AK, Khan MA, Kee SH. IoT-Based Healthcare-Monitoring System towards Improving Quality of Life: A Review. Healthcare (Basel). 2022 Oct 11;10(10):1993. Doi: 10.3390/healthcare10101993. PMID: 36292441; PMCID: PMC9601552.

Alotaibi, Eid. (2023). Risk Assessment Using Predictive Analytics. International Journal of Professional Business Review. 8. E01723. 10.26668/businessreview/2023.v8i5.1723.

Tantalaki, Nicoleta & Souravlas, Stavros & Roumeliotis, Manos. (2019). Data-Driven Decision Making in Precision Agriculture: The Rise of Big Data in Agricultural Systems. Journal of Agricultural & Food Information. 20. 344-380. 10.1080/10496505.2019.1638264.

Awoke, Melak. Et al., (2024). The Influence of Artificial Intelligence Technology on the Management of Livestock Farms. International Journal of Distributed Sensor Networks. Volume 2024, Issue 1. Doi: https://doi.org/10.1155/2024/8929748

AlZubi Ali Ahmad, Al-Zu’bi Maha (2023). Application of Artificial Intelligence in Monitoring of Animal Health and Welfare . Indian Journal of Animal Research. 57(11): 1550-1555. Doi: 10.18805/IJAR.BF-1698.

Das, Parinita & Saha, Kaushik. (2022). Artificial Intelligence in Agriculture.

Delfani, P., Thuraga, V., Banerjee, B. et al. Integrative approaches in modern agriculture: IoT, ML and AI for disease forecasting amidst climate change. Precision Agric 25, 2589–2613 (2024). https://doi.org/10.1007/s11119-024-10164-7

Hashem, Tareq & Joudeh, Jamal & Ahmad Zamil, Ahmad. (2024). Smart Farming (Ai-Generated) as an Approach to Better Control Pest and Disease Detection in Agriculture: POV Agricultural Institutions. Migration Letters. 21. 529-547. 10.59670/ml.v21iS1.6178.

Zhang, Li & Guo, Wenqiang & Lv, Chenrui & Guo, Meng & Yang, Mei & Fu, Qiuyue & Liu, Xiaomeng. (2023). Advancements in artificial intelligence technology for improving animal welfare: Current applications and research progress. Animal Research and One Health. 2. 10.1002/aro2.44.

Zhang, Li & Guo, Wenqiang & Lv, Chenrui & Guo, Meng & Yang, Mei & Fu, Qiuyue & Liu, Xiaomeng. (2023). Advancements in artificial intelligence technology for improving animal welfare: Current applications and research progress. Animal Research and One Health. 2. 10.1002/aro2.44.

Al-Kahtani MS, Khan F, Taekeun W. Application of Internet of Things and Sensors in Healthcare. Sensors (Basel). 2022 Jul 31;22(15):5738. Doi: 10.3390/s22155738. PMID: 35957294; PMCID: PMC9371210.

Liang, Chen & Shah, Tufail. (2023). IoT in Agriculture: The Future of Precision Monitoring and Data-Driven Farming. 7. 85-104.

Suresh Neethirajan, The role of sensors, big data and machine learning in modern animal farming, Sensing and Bio-Sensing Research, Volume 29, 2020, 100367, ISSN 2214-1804, https://doi.org/10.1016/j.sbsr.2020.100367.

Aunindita, Rudaba & Misbah, Muhammed & Joy, Sibbir & Rahman, Md. Ashikur & Mahabub, Sad & Noor, Jannatun. (2022). Use of Machine Learning and IoT for Monitoring and Tracking of Livestock. 815-820. 10.1109/ICCIT57492.2022.10055766.

Bao, Jun & Xie, Qiuju. (2022). Artificial intelligence in animal farming: A systematic literature review. Journal of Cleaner Production. 331. 129956. 10.1016/j.jclepro.2021.129956.

Karthik Darvesh, Nikhil Khande, Sanmay Avhad, Maahi Khemchandani. (2023). IOT AND AI-BASED SMART CATTLE HEALTH MONITORING. IEEE Dataport. https://dx.doi.org/10.21227/n59r-vy64

Sharma, A., Sharma, A., Tselykh, A., Bozhenyuk, A., Choudhury, T., Alomar, M. & Sánchez-Chero, M. (2023). Artificial intelligence and internet of things oriented sustainable precision farming: Towards modern agriculture. Open Life Sciences, 18(1), 20220713. https://doi.org/10.1515/biol-2022-0713

Bhisham Sharma & Deepika Koundal. (2018). Cattle health monitoring system using wireless sensor network: a survey from innovation perspective. The Institution of Engineering & Technology. Volume 8, Issue 4. P. 143-151. Doi: https://doi.org/10.1049/iet-wss.2017.0060

Suresh Neethirajan, Recent advances in wearable sensors for animal health management, Sensing and Bio-Sensing Research, Volume 12, 2017, Pages 15-29, ISSN 2214-1804, https://doi.org/10.1016/j.sbsr.2016.11.004.

Awasthi, Amruta & Riordan, Daniel & Walsh, Joseph. (2020). Sensor Technology For Animal Health Monitoring. International Journal on Smart Sensing and Intelligent Systems. 7. 1-6. 10.21307/ijssis-2019-057.

Schieltz, J.M. & Okanga, Sharon & Allan, Brian & Rubenstein, Daniel. (2017). GPS tracking cattle as a monitoring tool for conservation and management. African Journal of Range and Forage Science. 34. 173-177. 10.2989/10220119.2017.1387175.

Gaur, Mahesh & Chand, Khem & Louhaichi, Mounir & Johnson, Douglas. (2013). Role of GPS in monitoring livestock migration. Indian Cartographer. Vol XXXIII. 496-501.

Lee M, Seo S. Wearable Wireless Biosensor Technology for Monitoring Cattle: A Review. Animals (Basel). 2021 Sep 23;11(10):2779. Doi: 10.3390/ani11102779. PMID: 34679801; PMCID: PMC8532812.

Fuentes S, Gonzalez Viejo C, Tongson E, Dunshea FR. The livestock farming digital transformation: implementation of new and emerging technologies using artificial intelligence. Animal Health Research Reviews. 2022;23(1):59-71. Doi:10.1017/S1466252321000177

Rajawat, Anand & Bedi, Pradeep & Goyal, S B & Shaw, Rabindra & Ghosh, Ankush & Aggarwal, Sambhav. (2022). Anomalies Detection on Attached IoT Device at Cattle Body in Smart Cities Areas Using Deep Learning. 10.1007/978-981-16-7498-3_14.

Cheng, Man & Yuan, Hongbo & Wang, Qifan & Cai, Zhenjiang & Liu, Yueqin & Zhang, Yingjie. (2022). Application of deep learning in sheep behaviors recognition and influence analysis of training data characteristics on the recognition effect. Computers and Electronics in Agriculture. 198. 107010. 10.1016/j.compag.2022.107010.

Xinyu Tian, Mahbuba Afrin, Sajib Mistry, Redowan Mahmud, Aneesh Krishna, Yan Li, MURE: Multi-layer real-time livestock management architecture with unmanned aerial vehicles using deep reinforcement learning, Future Generation Computer Systems, Volume 161, 2024, Pages 454-466, ISSN 0167-739X, https://doi.org/10.1016/j.future.2024.07.038.

Ricardo S. Alonso, Inés Sittón-Candanedo, Óscar García, Javier Prieto, Sara Rodríguez-González, An intelligent Edge-IoT platform for monitoring livestock and crops in a dairy farming scenario, Ad Hoc Networks, Volume 98, 2020, 102047, ISSN 1570-8705, https://doi.org/10.1016/j.adhoc.2019.102047.

Harini Shree Bhaskaran, Miriam Gordon, Suresh Neethirajan, Development of a cloud-based IoT system for livestock health monitoring using AWS and python, Smart Agricultural Technology, Volume 9, 2024, 100524, ISSN 2772-3755, https://doi.org/10.1016/j.atech.2024.100524.

Isaac, Justin. (2021). IOT – LIVESTOCK MONITORING AND MANAGEMENT SYSTEM. International Journal of Engineering Applied Sciences and Technology. 5. 10.33564/IJEAST.2021.v05i09.042.

Krishnan, Saravanan & S., Saraniya. (2017). Cloud IOT based novel livestock monitoring and identification system using UID. Sensor Review. 38. 10.1108/SR-08-2017-0152.

Bello, Oladayo & Zeadally, Sherali & Badra, Mohammad. (2016). Network Layer Inter-operation of Device-to-Device Communication Technologies in Internet of Things (IoT). Ad Hoc Networks. 57. 10.1016/j.adhoc.2016.06.010.

Gordon, Miriam & Bhaskaran, Harini & Neethirajan, Suresh. (2024). Development of a Cloud-Based IoT System for Livestock Health Monitoring Using AWS and Python. Smart Agricultural Technology. 10.1016/j.atech.2024.100524.

Tri Nguyen, Huong Nguyen, Tuan Nguyen Gia, Exploring the integration of edge computing and blockchain IoT: Principles, architectures, security, and applications, Journal of Network and Computer Applications, Volume 226, 2024, 103884, ISSN 1084-8045, https://doi.org/10.1016/j.jnca.2024.103884

Unold O, Nikodem M, Piasecki M, Szyc K, Maciejewski H, Bawiec M, Dobrowolski P, Zdunek M. IoT-Based Cow Health Monitoring System. Computational Science – ICCS 2020. 2020 May 25;12141:344–56. Doi: 10.1007/978-3-030-50426-7_26. PMCID: PMC7302546.

Majumder S, Mondal T, Deen MJ. Wearable Sensors for Remote Health Monitoring. Sensors (Basel). 2017 Jan 12;17(1):130. Doi: 10.3390/s17010130. PMID: 28085085; PMCID: PMC5298703.

AlZubi Ali Ahmad (2023). Artificial Intelligence and its Application in the Prediction and Diagnosis of Animal Diseases: A Review . Indian Journal of Animal Research. 57(10): 1265-1271. Doi: 10.18805/IJAR.BF-1684.

Hammad Shahab, Muhammad Iqbal, Ahmed Sohaib, Farid Ullah Khan, Mohsin Waqas, IoT-based agriculture management techniques for sustainable farming: A comprehensive review, Computers and Electronics in Agriculture, Volume 220, 2024, 108851, ISSN 0168-1699, https://doi.org/10.1016/j.compag.2024.108851.

Halachmi, Ilan & Guarino, Marcella & Bewley, Jeffrey & Pastell, Matti. (2019). Smart Animal Agriculture: Application of Real-Time Sensors to Improve Animal Well-Being and Production. Annual Review of Animal Biosciences. 7. 10.1146/annurev-animal-020518-114851.

Santosh Pandey. Et al., (2021). Behavioral Monitoring Tool for Pig Farmers: Ear Tag Sensors, Machine Intelligence, and Technology Adoption Road map. Multidisciplinary Digital Publishing Institute. 11(9), 2665; https://doi.org/10.3390/ani11092665

Pereira, Wariston & Fonseca, Leonardo & Putti, Fernando & Góes, Bruno & Naves, Luciana. (2020). Environmental monitoring in a poultry farm using an instrument developed with the internet of things concept. Computers and Electronics in Agriculture. 170. 105257. 10.1016/j.compag.2020.105257.

Cho, Youngjoon & Kim, Jongwon. (2023). AI-Based Intelligent Monitoring System for Estrus Prediction in the Livestock Industry. Applied Sciences. 13. 2442. 10.3390/app13042442.

Lee, Meonghun. (2018). IoT Livestock Estrus Monitoring System based on Machine Learning. Asia-pacific Journal of Convergent Research Interchange. 4. 119-128. 10.14257/apjcri.2018.09.12.

Tak, Pooja & Kumawat, Ajay. (2024). “SMART FEEDER: AI-DRIVEN PRECISION ANIMAL NUTRITION SYSTEM”. ISSN: 0974-8946. 190-193.

Sonea, Cosmin & Gheorghe-Irimia, Raluca-Aniela & Tăpăloagă, Dana & Gurau, Maria & Udrea, Lavinia & Tapaloaga, Paul-Rodian. (2023). Optimizing Animal Nutrition and Sustainability Through Precision Feeding: A Mini Review of Emerging Strategies and Technologies. Annals ”Valahia” University of Targoviste – Agriculture. 15. 7-11. 10.2478/agr-2023-0011.

Thilakarathne, Navod & Priyashan, W.D. & Premarathna, Chanaka. (2021). Artificial Intelligence – Enabled IoT for Health and Wellbeing Monitoring. 01-07. 10.1109/ICCCNT51525.2021.9579792.

Unold, O. et al. (2020). IoT-Based Cow Health Monitoring System. In: Krzhizhanovskaya, V.V., et al. Computational Science – ICCS 2020. ICCS 2020. Lecture Notes in Computer Science(), vol 12141. Springer, Cham. https://doi.org/10.1007/978-3-030-50426-7_26

Bhatla, Ayushi & Kikani, Yash & Dg, Joshi & Jain, Rahul & Patel, Kavindra. (2023). Real Time Cattle Health Monitoring Using IoT, ThingSpeak, and a Mobile Application. 5. 7.

Darvesh, Karthik & Khande, N. & Avhad, S. & Khemchandani, M.. (2023). IOT and AI based smart cattle health monitoring. Journal of Livestock Science. 14. 211-218. 10.33259/JLivestSci.2023.211-218.

Curti, P. F., Selli, A., Pinto, D. L., Merlos-Ruiz, A., Balieiro, J. C. C., & Ventura, R. V. (2023). Applications of livestock monitoring devices and machine learning algorithms in animal production and reproduction: An overview. Animal Reproduction, 20(2), e20230077. https://doi.org/10.1590/1984-3143-AR2023-0077

Shahab, H., Iqbal, M., Sohaib, A., Rehman, A. U., Bermak, A., & Munir, K. (2024). Design and implementation of an IoT-based monitoring system for early detection of lumpy skin disease in cattle. Smart Agricultural Technology, 9, 100609. https://doi.org/10.1016/j.atech.2024.100609

Elijah, Olakunle & Abd Rahman, Tharek & Orikumhi, Igbafe & Leow, Chee Yen & Hindia, Mohammad. (2018). An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges. IEEE Internet of Things Journal. PP. 1-1. 10.1109/JIOT.2018.2844296.

Khan B, Fatima H, Qureshi A, Kumar S, Hanan A, Hussain J, Abdullah S. Drawbacks of Artificial Intelligence and Their Potential Solutions in the Healthcare Sector. Biomed Mater Devices. 2023 Feb 8:1-8. Doi: 10.1007/s44174-023-00063-2. Epub ahead of print. PMID: 36785697; PMCID: PMC9908503.

Dawn, Nabarun & Ghosh, Tania & Ghosh, Souptik & Saha, Aloke & Mukherjee, Pronoy & Sarkar, Subhajit & Guha, Sagnik & Sanyal, Tanmay. (2023). Implementation of Artificial Intelligence, Machine Learning, and Internet of Things (IoT) in revolutionizing Agriculture: A review on recent trends and challenges. 30. 190-218. 10.52756/ijerr.2023.v30.018.

Issa, Ali & Majed, Safa & Ameer, Abdul & Al-Jawahry, Hassan. (2024). IoT and AI in Livestock Management: A Game Changer for Farmers. E3S Web of Conferences. 491. 10.1051/e3sconf/202449102015.

Prem Rajak, Abhratanu Ganguly, Satadal Adhikary, Suchandra Bhattacharya, Internet of Things and smart sensors in agriculture: Scopes and challenges, Journal of Agriculture and Food Research, Volume 14, 2023, 100776, ISSN 2666-1543, https://doi.org/10.1016/j.jafr.2023.100776.

Preetha Evangeline David, Pethuru Raj Chelliah, P. Anandhakumar, Chapter Nine – Reshaping agriculture using intelligent edge computing, Editor(s): Preetha Evangeline David, P. Anandhakumar, Advances in Computers, Elsevier, Volume 132, 2024, Pages 167-204, ISSN 0065-2458, ISBN 9780323885447, https://doi.org/10.1016/bs.adcom.2023.08.007.

K, ANKITHA; D H, MANJAIAH ; M, Kartik (2020), “Data for: Clinical Mastitis in Cows based on Udder Parameter using Internet of Things (IoT)”, Mendeley Data, V2, doi: 10.17632/kbvcdw5b4m.2

Annazam, I. S. (2023). Bovine Talk Dataset. GitLab. Retrieved from https://gitlab.com/is-annazam/bovinetalk

University of Illinois Urbana-Champaign. (2022). Fecal Matter Dataset. Roboflow. Retrieved October 19, 2024, from https://universe.roboflow.com/uiuc-zglz1

Padhyay, K. (2022). Cow health prediction [Mixed Datasets]. Kaggle. https://www.kaggle.com/datasets/khushupadhyay/cow-health-prediction

Mitsunaga TM, Nery Garcia BL, Pereira LBR, Costa YCB, da Silva RF, Delbem ACB, Dos Santos MV. Current Trends in Artificial Intelligence and Bovine Mastitis Research: A Bibliometric Review Approach. Animals (Basel). 2024 Jul 9;14(14):2023. Doi: 10.3390/ani14142023. PMID: 39061485; PMCID: PMC11273831.

Kumar, Abhishek & Sindhwani, Manoj & Sachdeva, Shippu. (2023). Detection of Mastitis Disease in Cow with Machine Learning Classifiers. Israa University Journal for Applied Science. 7. 112-129. 10.52865/DQFZ6016.

Khan, Mohammad & Thorup, Vivi & Luo, Zhenhua. (2024). Delineating Mastitis Cases in Dairy Cows: Development of an IoT-Enabled Intelligent Decision Support System for Dairy Farms. IEEE Transactions on Industrial Informatics. PP. 10.1109/TII.2024.3384594.

Neethirajan, S. Artificial Intelligence and Sensor Innovations: Enhancing Livestock Welfare with a Human-Centric Approach. Hum-Cent Intell Syst 4, 77–92 (2024). https://doi.org/10.1007/s44230-023-00050-2

Li, Zhang. Et al., (2023). Advancements in artificial intelligence technology for improving animal welfare: Current applications and research progress. Animal Research and One Health. Volume 2, Issue 1. Doi: https://doi.org/10.1002/aro2.44

Pandey, Dev & Mishra, Nidhi. (2024). An Integrated Approach to Dairy Farming: AI and IoT-Enabled Monitoring of Cows and Crops via a Mobile Application. BIO Web of Conferences. 82. 10.1051/bioconf/20248205020.

Džermeikaitė, Karina, Dovilė Bačėninaitė, and Ramūnas Antanaitis. 2023. “Innovations in Cattle Farming: Application of Innovative Technologies and Sensors in the Diagnosis of Diseases” Animals 13, no. 5: 780. https://doi.org/10.3390/ani13050780

AlZubi Ali Ahmad, Al-Zu’bi Maha (2023). Application of Artificial Intelligence in Monitoring of Animal Health and Welfare . Indian Journal of Animal Research. 57(11): 1550-1555. Doi: 10.18805/IJAR.BF-1698.

Sharifuzzaman M, Mun HS, Ampode KMB, Lagua EB, Park HR, Kim YH, Hasan MK, Yang CJ. Technological Tools and Artificial Intelligence in Estrus Detection of Sows-A Comprehensive Review. Animals (Basel). 2024 Jan 31;14(3):471. Doi: 10.3390/ani14030471. PMID: 38338113; PMCID: PMC10854728.

Mahato, Shubhangi & Neethirajan, Suresh. (2024). Integrating Artificial Intelligence in Dairy Farm Management – Biometric Facial Recognition for Cows. 10.20944/preprints202401.2032.v1.

Neethirajan, S. Artificial Intelligence and Sensor Innovations: Enhancing Livestock Welfare with a Human-Centric Approach. Hum-Cent Intell Syst 4, 77–92 (2024). https://doi.org/10.1007/s44230-023-00050-2

El Moutaouakil, Khalid & Noureddine, Falih. (2024). A comparative study on time series data-based artificial intelligence approaches for classifying cattle feeding behavior. Indonesian Journal of Electrical Engineering and Computer Science. 33. 324-332. 10.11591/ijeecs.v33.i1.pp324-332.

Mahadasa, Ravikiran. (2019). Evolution of Smart Farming: Integrating IoT and AI in Agricultural Engineering. Global Disclosure of Economics and Business. 8. 165-178. 10.18034/gdeb.v8i2.714.

Lo’ai Tawalbeh. Et al., (2020). IoT Privacy and Security: Challenges and Solutions. Multidisciplinary Digital Publishing Institute.10(12), 4102; https://doi.org/10.3390/app10124102

Adewuyi, Adeleye & Ahmed, Abass & Ajayi, Olakunle & Tsambatare, Tsungai & Oloke, Kolawole & Abijo, Idris. (2024). The Convergence of Cybersecurity, Internet of Things (IoT), and Data Analytics: Safeguarding Smart Ecosystems. World Journal of Advanced Research and Reviews. 23. 379-394. 10.30574/wjarr.2024.23.1.1993.

Nižetić S, Šolić P, López-de-Ipiña González-de-Artaza D, Patrono L. Internet of Things (IoT): Opportunities, issues and challenges towards a smart and sustainable future. J Clean Prod. 2020 Nov 20;274:122877. Doi: 10.1016/j.jclepro.2020.122877. Epub 2020 Jul 19. PMID: 32834567; PMCID: PMC7368922.

Bhangar, Nadir & Kashem, Abul. (2023). IoT and AI for Next-Generation Farming: Opportunities, Challenges, and Outlook. 8.

Neethirajan, Suresh. (2023). The Significance and Ethics of Digital Livestock Farming. AgriEngineering. 5. 488-505. 10.3390/agriengineering5010032.

Neethirajan, Suresh. (2024). Metaverse for Enhancing Animal Welfare – Leveraging Sensor Technology and Ethical Considerations. Journal of Emerging Computer Technologies. 4. 6-14. 10.57020/ject.1460995.

Jahanzeb, Shahi. Et al., (2022). Data Protection and Privacy of the Internet of Healthcare Things (IoHTs). Multidisciplinary Digital Publishing Institute. 12(4), 1927; https://doi.org/10.3390/app12041927

Zulkifli, I. Review of human-animal interactions and their impact on animal productivity and welfare. J Animal Sci Biotechnol 4, 25 (2013). https://doi.org/10.1186/2049-1891-4-25

Yerbury RM, Lukey SJ. Human-Animal Interactions: Expressions of Wellbeing through a “Nature Language”. Animals (Basel). 2021 Mar 29;11(4):950. Doi: 10.3390/ani11040950. PMID: 33805308; PMCID: PMC8067212.

Neethirajan, Suresh. (2023). Artificial Intelligence and Sensor Innovations: Enhancing Livestock Welfare with a Human-Centric Approach. Human-Centric Intelligent Systems. 4. 1-16. 10.1007/s44230-023-00050-2.

Neethirajan, Suresh. (2023). The Significance and Ethics of Digital Livestock Farming. Multidisciplinary Digital Publishing Institute. 5(1), 488-505; https://doi.org/10.3390/agriengineering5010032

Wassie, Awoke & Aseged, Tesfalem & Shitaw, Takele. (2024). The Influence of Artificial Intelligence Technology on the Management of Livestock Farms. International Journal of Distributed Sensor Networks. 2024. 1-12. 10.1155/2024/8929748.

Božić, Velibor. (2023). Explainable Artificial Intelligence (XAI): Enhancing Transparency and Trust in AI Systems. 10.13140/RG.2.2.23444.48007.

Awasthi, Amruta & Riordan, Daniel & Walsh, Joseph. (2020). Sensor Technology For Animal Health Monitoring. International Journal on Smart Sensing and Intelligent Systems. 7. 1-6. 10.21307/ijssis-2019-057.

Jun, Liu. Et al., (2023). Survey of Intelligent Agricultural IoT Based on 5G. Multidisciplinary Digital Publishing Institute. 12(10), 2336; https://doi.org/10.3390/electronics12102336

Guo, Xianhai. (2021). Application of agricultural IoT technology based on 5 G network and FPGA. Microprocessors and Microsystems. 80. 103597. 10.1016/j.micpro.2020.103597.

Youngjoon, Cho, & Jongwon, Kim. (2023). AI-Based Intelligent Monitoring System for Estrus Prediction in the Livestock Industry. Multidisciplinary Digital Publishing Institute. 13(4), 2442; https://doi.org/10.3390/app13042442

Hu G, Do DN, Gray J, Miar Y. Selection for Favorable Health Traits: A Potential Approach to Cope with Diseases in Farm Animals. Animals (Basel). 2020 Sep 22;10(9):1717. Doi: 10.3390/ani10091717. PMID: 32971980; PMCID: PMC7552752.

Singh, Amandeep & Kashyap, Neeraj & Phand, Shahaji & Das, Sushrirekha & Brar, Parkash. (2023). Prospects & Applications of Artificial Intelligence in Livestock Sector.

Downloads

Published

20-01-2025

Issue

Section

Articles

How to Cite

Singh, G. (2025). COGNIHERD: Livestock Health Monitoring Using Artificial Intelligence (AI) and Internet of Things (IoT). International Journal of Innovative Scientific Research, 3(1), 11-75. https://ijisr.net/ijisr/article/view/43

Similar Articles

1-10 of 30

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)