Comparative Analysis of the Extraction and Characterization of Cellulosic Fibers and Lignin from Banana Pseudo-Stem and Cotton Stalk for Value Addition

Authors

  • Uma There Mahatma Gandhi Institute for Rural Industrialisation (MGIRI), A National Institute under the Ministry of MSME, Govt of India, Wardha-442001, India https://orcid.org/0000-0002-3267-2894
  • Shreya Badhiye Mahatma Gandhi Institute for Rural Industrialisation (MGIRI), A National Institute under the Ministry of MSME, Govt of India, Wardha-442001, India
  • Gayatri Thakare Mahatma Gandhi Institute for Rural Industrialisation (MGIRI), A National Institute under the Ministry of MSME, Govt of India, Wardha-442001, India
  • Vikas Choudhary Mahatma Gandhi Institute for Rural Industrialisation (MGIRI), A National Institute under the Ministry of MSME, Govt of India, Wardha-442001, India

Keywords:

Extraction, Cellulosic Fibre, Banana Pseudo Stem, Cotton Stalk, Recycle, Lignin

Abstract

This study investigates the extraction and characterization of cellulosic fibers and lignin from agricultural waste materials, specifically banana pseudostems and cotton stalks. A systematic extraction process was employed to isolate these components, and their yield and quality were assessed. Results indicated that banana pseudostems yielded approximately 37.4 to 37.9 grams of high-quality cellulosic fibers per 100 grams of dried stem, exhibiting excellent thermal stability with an initial degradation temperature of 300.53°C. These fibers show potential for applications in textiles, biocomposites, and biopolymers. In comparison, cotton stalks produced a higher yield of cellulosic fibers, ranging from 44.4 to 46.5 grams per 100 grams of dried stem, optimized through sodium hydroxide treatment, making them suitable for reinforcement in composite materials and packaging. The extraction process also yielded up to 15.5 grams of lignin from cotton stalks, which is suitable for high-strength materials, while the lignin from banana pseudostems, though less condensed, shows promise for use in bioplastics and adhesives. Fourier Transform Infrared Spectroscopy (FTIR) analysis confirmed distinct structural properties, revealing high concentrations of hydroxyl groups in banana fibers and identifiable aromatic structures in the lignin. Thermogravimetric analysis (TGA) demonstrated that banana fibers possess superior thermal stability compared to those from cotton stalks. This research highlights the value of agricultural waste through biorefining processes, promoting sustainable resource utilization and supporting the principles of a circular bioeconomy.

Downloads

Download data is not yet available.

References

Ashokkumar, V., Venkatkarthick, R., Jayashree, S., Chuetor, S., Dharmaraj, S., Kumar, G., ... & Ngamcharussrivichai, C. (2022). Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts-A critical review. Bioresource technology, 344, 126195. https://doi.org/10.1016/j.biortech.2021.126195

Okolie, J. A., Nanda, S., Dalai, A. K., & Kozinski, J. A. (2021). Chemistry and specialty industrial applications of lignocellulosic biomass. Waste and Biomass Valorization, 12, 2145-2169. https://doi.org/10.1007/s12649-020-01123-0

Mujtaba, M., Fraceto, L. F., Fazeli, M., Mukherjee, S., Savassa, S. M., de Medeiros, G. A., ... & Vilaplana, F. (2023). Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. Journal of Cleaner Production, 402, 136815. https://doi.org/10.1016/j.jclepro.2023.136815

Wang, H., Pu, Y., Ragauskas, A., & Yang, B. (2019). From lignin to valuable products–strategies, challenges, and prospects. Bioresource technology, 271, 449-461. https://doi.org/10.1016/j.biortech.2018.09.072

Kamm, B., & Kamm, M. J. A. M. (2004). Principles of biorefineries. Applied microbiology and biotechnology, 64(2), 137-145. https://doi.org/10.1007/s00253-003-1537-7

Gupta, G., Baranwal, M., Saxena, S., & Reddy, M. S. (2023). Utilization of banana waste as a resource material for biofuels and other value-added products. Biomass Conversion and Biorefinery, 13(14), 12717-12736. https://doi.org/10.1007/s13399-022-02306-6

Kumar, A., Singh, B. P., Jain, R. K., & Sharma, A. K. (2013). Banana fibre (Musa sapientum): a suitable raw material for handmade paper industry via enzymatic refining. International Journal of Engineering Research & Technology, 2(10), 1338-1350. https://www.ijert.org/research/banana-fibre-musa-sapientum-a-suitable-raw-material-for-handmade-paper-industry-via-enzymatic-refining-IJERTV2IS100417.pdf

Berhanu, H., Kiflie, Z., Neiva, D., Gominho, J., Feleke, S., Yimam, A., & Pereira, H. (2018). Optimization of ethanol-alkali delignification of false banana (Ensete ventricosum) fibers for pulp production using response surface methodology. Industrial Crops and Products, 126, 426-433. https://doi.org/10.1016/j.indcrop.2018.08.093

Arce, C., & Kratky, L. (2022). Mechanical pretreatment of lignocellulosic biomass toward enzymatic/fermentative valorization. IScience, 25(7). https://doi.org/10.1016/j.isci.2022.104610

Ferdous, T., Quaiyyum, M. A., Jin, Y., Bashar, M. S., Yasin Arafat, K. M., & Jahan, M. S. (2021). Pulping and bleaching potential of banana pseudo stem, banana leaf and banana peduncle. Biomass Conversion and Biorefinery, 1-12. https://www.springerprofessional.de/en/pulping-and-bleaching-potential-of-banana-pseudo-stem-banana-lea/18719540

Doshi, A., & Karolia, A. (2016). Process optimization for bleaching of banana fibers. Int J Sci Res, 5, 362-365. https://www.worldwidejournals.com/international-journal-of-scientific-research-(IJSR)/article/process-optimization-for-bleaching-of-banana-fibers/ODI2OA==/?is=1

Sun, J. X., Mao, F. C., Sun, X. F., & Sun, R. (2005). Comparative study of hemicelluloses isolated with alkaline peroxide from lignocellulosic materials. Journal of wood chemistry and technology, 24(3), 239-262. https://doi.org/10.1081/WCT-200038170

Kumar, R., & Wyman, C. E. (2013). Physical and chemical features of pretreated biomass that influence macro‐/micro‐accessibility and biological processing. Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals, 281-310. https://doi.org/10.1002/9780470975831.ch14

Mueller, S., Weder, C., & Foster, E. J. (2014). Isolation of cellulose nanocrystals from pseudostems of banana plants. RSC advances, 4(2), 907-915. https://pubs.rsc.org/en/content/articlelanding/2014/ra/c3ra46390g

Sun, J. X., Sun, X. F., Sun, R. C., & Su, Y. Q. (2004). Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydrate polymers, 56(2), 195-204. https://doi.org/10.1016/j.carbpol.2004.02.002

Sain, M., Sameni, J., & Krigstin, S. (2016). Characterization of lignins isolated from industrial residues and their beneficial uses. BioResources, 11(4), 8435-8456.

Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & engineering chemistry research, 48(8), 3713-3729. https://doi.org/10.1021/ie801542g

Mishra, R. K., & Mohanty, K. (2018). Characterization of non-edible lignocellulosic biomass in terms of their candidacy towards alternative renewable fuels. Biomass Conversion and Biorefinery, 8, 799-812. https://doi.org/10.1007/s13399-018-0332-8

Khalil, H. A., Bhat, A. H., & Yusra, A. I. (2012). Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate polymers, 87(2), 963-979. https://doi.org/10.1016/j.carbpol.2011.08.078

Thakur, V. K., Thakur, M. K., Raghavan, P., & Kessler, M. R. (2014). Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustainable Chemistry & Engineering, 2(5), 1072-1092. https://doi.org/10.1021/sc500087z

Madakadze, I. C., Masamvu, T. M., Radiotis, T., Li, J., & Smith, D. L. (2010). Evaluation of pulp and paper making characteristics of elephant grass (Pennisetum purpureum Schum) and switchgrass (Panicum virgatum L.). African Journal of Environmental Science and Technology, 4(7), 465-470.

Vishtal, A., & Kraslawski, A. (2011). Challenges in industrial applications of technical lignins. BioResources, 6(3), 3547–3568. https://doi.org/10.15376/biores.6.3.3547-3568

Sun, J. X., Sun, X. F., Sun, R. C., Fowler, P., & Baird, M. S. (2003). Inhomogeneities in the chemical structure of sugarcane bagasse lignin. Journal of Agricultural and Food Chemistry, 51(23), 6719-6725. https://doi.org/10.1021/jf034633j

Lora, J. H., & Glasser, W. G. (2002). Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. Journal of Polymers and the Environment, 10, 39-48. https://doi.org/10.1023/A:1021070006895

Hospodarova, V., Singovszka, E., & Stevulova, N. (2018). Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materials. American journal of analytical chemistry, 9(6), 303-310. https://doi.org/10.4236/ajac.2018.96023

Jiang, F., & Hsieh, Y. L. (2013). Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydrate polymers, 95(1), 32-40. https://doi.org/10.1016/j.carbpol.2013.02.022

Monteiro, S. N., Margem, F. M., Loiola, R. L., de Assis, F. S., & Oliveira, M. P. (2014). Characterization of banana fibers functional groups by infrared spectroscopy. In Materials Science Forum (Vol. 775, pp. 250-254). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/MSF.775-776.250

Onwukamike, K. N., Grelier, S., Grau, E., Cramail, H., & Meier, M. A. (2018). Critical review on sustainable homogeneous cellulose modification: why renewability is not enough. ACS Sustainable Chemistry & Engineering, 7(2), 1826-1840.

Demuner, I. F., Colodette, J. L., Demuner, A. J., & Jardim, C. M. (2019). Biorefinery review: Wide-reaching products through kraft lignin. BioResources, 14(3), 7543-7581. https://doi.org/10.15376/biores.14.3.Demuner

Akatwijuka, O., Gepreel, M. A. H., Abdel-Mawgood, A., Yamamoto, M., Saito, Y., & Hassanin, A. H. (2024). Overview of banana cellulosic fibers: agro-biomass potential, fiber extraction, properties, and sustainable applications. Biomass Conversion and Biorefinery, 14(6), 7449-7465. https://doi.org/10.1007/s13399-022-02819-0

Reddy, N., & Yang, Y. (2009). Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Bioresource technology, 100(14), 3563-3569. https://doi.org/10.1016/j.biortech.2009.02.047

Kozlowski, R., & Wladyka-Przybylak, M. (2004). Uses of natural fiber reinforced plastics. In Natural fibers, plastics and composites (pp. 249-274). Boston, MA: Springer US.

Koul, B., Yakoob, M., & Shah, M. P. (2022). Agricultural waste management strategies for environmental sustainability. Environmental Research, 206, 112285. https://doi.org/10.1016/j.envres.2021.112285

Khan, A., Iftikhar, K., Mohsin, M., Ubaidullah, M., Ali, M., & Mueen, A. (2022). Banana agro-waste as an alternative to cotton fibre in textile applications. Yarn to fabric: An ecofriendly approach. Industrial Crops and Products, 189, 115687. https://doi.org/10.1016/j.indcrop.2022.115687

Segal, L. G. J. M. A., Creely, J. J., Martin Jr, A. E., & Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile research journal, 29(10), 786-794. https://doi.org/10.1177/004051755902901003

Downloads

Published

14-11-2024

Issue

Section

Articles

How to Cite

There, U., Badhiye, S., Thakare, G., & Choudhary, V. (2024). Comparative Analysis of the Extraction and Characterization of Cellulosic Fibers and Lignin from Banana Pseudo-Stem and Cotton Stalk for Value Addition. International Journal of Innovative Scientific Research, 2(4), 54-66. https://ijisr.net/ijisr/article/view/27

Similar Articles

You may also start an advanced similarity search for this article.