Comparative Analysis of the Extraction and Characterization of Cellulosic Fibers and Lignin from Banana Pseudo-Stem and Cotton Stalk for Value Addition
Keywords:
Extraction, Cellulosic Fibre, Banana Pseudo Stem, Cotton Stalk, Recycle, LigninAbstract
This study investigates the extraction and characterization of cellulosic fibers and lignin from agricultural waste materials, specifically banana pseudostems and cotton stalks. A systematic extraction process was employed to isolate these components, and their yield and quality were assessed. Results indicated that banana pseudostems yielded approximately 37.4 to 37.9 grams of high-quality cellulosic fibers per 100 grams of dried stem, exhibiting excellent thermal stability with an initial degradation temperature of 300.53°C. These fibers show potential for applications in textiles, biocomposites, and biopolymers. In comparison, cotton stalks produced a higher yield of cellulosic fibers, ranging from 44.4 to 46.5 grams per 100 grams of dried stem, optimized through sodium hydroxide treatment, making them suitable for reinforcement in composite materials and packaging. The extraction process also yielded up to 15.5 grams of lignin from cotton stalks, which is suitable for high-strength materials, while the lignin from banana pseudostems, though less condensed, shows promise for use in bioplastics and adhesives. Fourier Transform Infrared Spectroscopy (FTIR) analysis confirmed distinct structural properties, revealing high concentrations of hydroxyl groups in banana fibers and identifiable aromatic structures in the lignin. Thermogravimetric analysis (TGA) demonstrated that banana fibers possess superior thermal stability compared to those from cotton stalks. This research highlights the value of agricultural waste through biorefining processes, promoting sustainable resource utilization and supporting the principles of a circular bioeconomy.
Downloads
References
Ashokkumar, V., Venkatkarthick, R., Jayashree, S., Chuetor, S., Dharmaraj, S., Kumar, G., ... & Ngamcharussrivichai, C. (2022). Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts-A critical review. Bioresource technology, 344, 126195. https://doi.org/10.1016/j.biortech.2021.126195
Okolie, J. A., Nanda, S., Dalai, A. K., & Kozinski, J. A. (2021). Chemistry and specialty industrial applications of lignocellulosic biomass. Waste and Biomass Valorization, 12, 2145-2169. https://doi.org/10.1007/s12649-020-01123-0
Mujtaba, M., Fraceto, L. F., Fazeli, M., Mukherjee, S., Savassa, S. M., de Medeiros, G. A., ... & Vilaplana, F. (2023). Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. Journal of Cleaner Production, 402, 136815. https://doi.org/10.1016/j.jclepro.2023.136815
Wang, H., Pu, Y., Ragauskas, A., & Yang, B. (2019). From lignin to valuable products–strategies, challenges, and prospects. Bioresource technology, 271, 449-461. https://doi.org/10.1016/j.biortech.2018.09.072
Kamm, B., & Kamm, M. J. A. M. (2004). Principles of biorefineries. Applied microbiology and biotechnology, 64(2), 137-145. https://doi.org/10.1007/s00253-003-1537-7
Gupta, G., Baranwal, M., Saxena, S., & Reddy, M. S. (2023). Utilization of banana waste as a resource material for biofuels and other value-added products. Biomass Conversion and Biorefinery, 13(14), 12717-12736. https://doi.org/10.1007/s13399-022-02306-6
Kumar, A., Singh, B. P., Jain, R. K., & Sharma, A. K. (2013). Banana fibre (Musa sapientum): a suitable raw material for handmade paper industry via enzymatic refining. International Journal of Engineering Research & Technology, 2(10), 1338-1350. https://www.ijert.org/research/banana-fibre-musa-sapientum-a-suitable-raw-material-for-handmade-paper-industry-via-enzymatic-refining-IJERTV2IS100417.pdf
Berhanu, H., Kiflie, Z., Neiva, D., Gominho, J., Feleke, S., Yimam, A., & Pereira, H. (2018). Optimization of ethanol-alkali delignification of false banana (Ensete ventricosum) fibers for pulp production using response surface methodology. Industrial Crops and Products, 126, 426-433. https://doi.org/10.1016/j.indcrop.2018.08.093
Arce, C., & Kratky, L. (2022). Mechanical pretreatment of lignocellulosic biomass toward enzymatic/fermentative valorization. IScience, 25(7). https://doi.org/10.1016/j.isci.2022.104610
Ferdous, T., Quaiyyum, M. A., Jin, Y., Bashar, M. S., Yasin Arafat, K. M., & Jahan, M. S. (2021). Pulping and bleaching potential of banana pseudo stem, banana leaf and banana peduncle. Biomass Conversion and Biorefinery, 1-12. https://www.springerprofessional.de/en/pulping-and-bleaching-potential-of-banana-pseudo-stem-banana-lea/18719540
Doshi, A., & Karolia, A. (2016). Process optimization for bleaching of banana fibers. Int J Sci Res, 5, 362-365. https://www.worldwidejournals.com/international-journal-of-scientific-research-(IJSR)/article/process-optimization-for-bleaching-of-banana-fibers/ODI2OA==/?is=1
Sun, J. X., Mao, F. C., Sun, X. F., & Sun, R. (2005). Comparative study of hemicelluloses isolated with alkaline peroxide from lignocellulosic materials. Journal of wood chemistry and technology, 24(3), 239-262. https://doi.org/10.1081/WCT-200038170
Kumar, R., & Wyman, C. E. (2013). Physical and chemical features of pretreated biomass that influence macro‐/micro‐accessibility and biological processing. Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals, 281-310. https://doi.org/10.1002/9780470975831.ch14
Mueller, S., Weder, C., & Foster, E. J. (2014). Isolation of cellulose nanocrystals from pseudostems of banana plants. RSC advances, 4(2), 907-915. https://pubs.rsc.org/en/content/articlelanding/2014/ra/c3ra46390g
Sun, J. X., Sun, X. F., Sun, R. C., & Su, Y. Q. (2004). Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydrate polymers, 56(2), 195-204. https://doi.org/10.1016/j.carbpol.2004.02.002
Sain, M., Sameni, J., & Krigstin, S. (2016). Characterization of lignins isolated from industrial residues and their beneficial uses. BioResources, 11(4), 8435-8456.
Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & engineering chemistry research, 48(8), 3713-3729. https://doi.org/10.1021/ie801542g
Mishra, R. K., & Mohanty, K. (2018). Characterization of non-edible lignocellulosic biomass in terms of their candidacy towards alternative renewable fuels. Biomass Conversion and Biorefinery, 8, 799-812. https://doi.org/10.1007/s13399-018-0332-8
Khalil, H. A., Bhat, A. H., & Yusra, A. I. (2012). Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate polymers, 87(2), 963-979. https://doi.org/10.1016/j.carbpol.2011.08.078
Thakur, V. K., Thakur, M. K., Raghavan, P., & Kessler, M. R. (2014). Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustainable Chemistry & Engineering, 2(5), 1072-1092. https://doi.org/10.1021/sc500087z
Madakadze, I. C., Masamvu, T. M., Radiotis, T., Li, J., & Smith, D. L. (2010). Evaluation of pulp and paper making characteristics of elephant grass (Pennisetum purpureum Schum) and switchgrass (Panicum virgatum L.). African Journal of Environmental Science and Technology, 4(7), 465-470.
Vishtal, A., & Kraslawski, A. (2011). Challenges in industrial applications of technical lignins. BioResources, 6(3), 3547–3568. https://doi.org/10.15376/biores.6.3.3547-3568
Sun, J. X., Sun, X. F., Sun, R. C., Fowler, P., & Baird, M. S. (2003). Inhomogeneities in the chemical structure of sugarcane bagasse lignin. Journal of Agricultural and Food Chemistry, 51(23), 6719-6725. https://doi.org/10.1021/jf034633j
Lora, J. H., & Glasser, W. G. (2002). Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. Journal of Polymers and the Environment, 10, 39-48. https://doi.org/10.1023/A:1021070006895
Hospodarova, V., Singovszka, E., & Stevulova, N. (2018). Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materials. American journal of analytical chemistry, 9(6), 303-310. https://doi.org/10.4236/ajac.2018.96023
Jiang, F., & Hsieh, Y. L. (2013). Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydrate polymers, 95(1), 32-40. https://doi.org/10.1016/j.carbpol.2013.02.022
Monteiro, S. N., Margem, F. M., Loiola, R. L., de Assis, F. S., & Oliveira, M. P. (2014). Characterization of banana fibers functional groups by infrared spectroscopy. In Materials Science Forum (Vol. 775, pp. 250-254). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/MSF.775-776.250
Onwukamike, K. N., Grelier, S., Grau, E., Cramail, H., & Meier, M. A. (2018). Critical review on sustainable homogeneous cellulose modification: why renewability is not enough. ACS Sustainable Chemistry & Engineering, 7(2), 1826-1840.
Demuner, I. F., Colodette, J. L., Demuner, A. J., & Jardim, C. M. (2019). Biorefinery review: Wide-reaching products through kraft lignin. BioResources, 14(3), 7543-7581. https://doi.org/10.15376/biores.14.3.Demuner
Akatwijuka, O., Gepreel, M. A. H., Abdel-Mawgood, A., Yamamoto, M., Saito, Y., & Hassanin, A. H. (2024). Overview of banana cellulosic fibers: agro-biomass potential, fiber extraction, properties, and sustainable applications. Biomass Conversion and Biorefinery, 14(6), 7449-7465. https://doi.org/10.1007/s13399-022-02819-0
Reddy, N., & Yang, Y. (2009). Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Bioresource technology, 100(14), 3563-3569. https://doi.org/10.1016/j.biortech.2009.02.047
Kozlowski, R., & Wladyka-Przybylak, M. (2004). Uses of natural fiber reinforced plastics. In Natural fibers, plastics and composites (pp. 249-274). Boston, MA: Springer US.
Koul, B., Yakoob, M., & Shah, M. P. (2022). Agricultural waste management strategies for environmental sustainability. Environmental Research, 206, 112285. https://doi.org/10.1016/j.envres.2021.112285
Khan, A., Iftikhar, K., Mohsin, M., Ubaidullah, M., Ali, M., & Mueen, A. (2022). Banana agro-waste as an alternative to cotton fibre in textile applications. Yarn to fabric: An ecofriendly approach. Industrial Crops and Products, 189, 115687. https://doi.org/10.1016/j.indcrop.2022.115687
Segal, L. G. J. M. A., Creely, J. J., Martin Jr, A. E., & Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile research journal, 29(10), 786-794. https://doi.org/10.1177/004051755902901003
Downloads
-
Download PDF
Abstract Views: 195,
Download PDF: 78
Published
Issue
Section
License
Copyright (c) 2024 International Journal of Innovative Scientific Research

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.