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 As admissible solutions to Einstein’s field equations, traversable wormholes present the 
prospect of non-trivial topological structures tying disparate areas of spacetime together.  
Their stability is seriously questioned because their theoretical existence, which is 
determined by the Morris-Thorne metric, requires the inclusion of exotic matter that 
violates the energy conditions.  These structures also allow for the creation of closed 
timelike curves (CTCs), which could violate causality and cause paradoxes, undermining 
the basic tenets of chronology protection.  Although different gravity models and 
semiclassical quantum effects suggest ways to maintain wormholes, it is still unclear how 
to precisely formulate stability criteria and causal consistency.  In order to predict 
wormhole stability and identify the emergence of causal loops, this study makes use of 
deep learning techniques and artificial intelligence (AI). In order to evaluate the effect of 
exotic matter distributions on stability, Einstein’s field equations are numerically solved 
using Physics-Informed Neural Networks (PINNs) under dynamic boundary conditions.  
Potential CTC formations and self-consistency violations are detected by tracing geodesic 
structures using Graph Neural Networks (GNNs), Quantum Neural Network (QNNs)and 
Recurrent Neural Networks (RNNs).  Furthermore, the exotic matter configuration is 
optimised via reinforcement learning (RL) techniques to minimise instabilities while 
maintaining traversability.  This research advances the intersection of machine learning, 
general relativity, and quantum field theory in the study of spacetime topology and 
causality, analyses chronology protection mechanisms, and evaluates wormhole viability 
by fusing relativistic physics with AI-driven computational techniques. 

 

1. Introduction 

The Morris-Thorne metric offers a mathematical framework for describing such structures, ensuring 
traversability without event horizons. Traversable wormholes, first theorised within general relativity, offer  
___________________________ 
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hypothetical shortcuts through spacetime, potentially enabling faster-than-light travel and even time travel. 
However, maintaining a stable wormhole requires exotic matter that violates known energy conditions, 
specifically the Null Energy Condition (NEC). This requirement presents significant theoretical and physical 
challenges, as exotic matter remains speculative with no verified natural sources (Radhakrishnan, R. et al., 
2024). 

Beyond stability, traversable wormholes present serious issues with chronology protection and causality.  
These structures contain closed timelike curves (CTCs), which raise the possibility of time travel and give rise 
to paradoxes like self-referential causal loops and the grandfather paradox.  In response, Hawking’s 
Chronology Protection Conjecture suggests that by destabilising CTC production, quantum processes might 
stop such violations.  However, there are still unanswered problems regarding the basic structure of spacetime 
because a definitive mechanism enforcing this conjecture has not been proven (Youvan, Douglas. 2024). 

Deep learning (DL) and artificial intelligence (AI) provide strong computational tools for examining 
wormhole stability and causality violations because of their complexity.  In order to forecast stability under 
various exotic matter conditions, this study uses deep learning frameworks like convolutional neural 
networks (CNNs) and recurrent neural networks (RNNs) in conjunction with AI-driven numerical relativity 
simulations to describe wormhole dynamics (Reyna, Joseph, 2024). 

Neural networks are used to detect CTC evolution and analyse geodesic structures in order to evaluate 
causality violations.  In order to find any self-consistency violations, graph neural networks (GNNs) look into 
the causal structure of spacetime in more detail.  Furthermore, to determine if quantum effects strengthen 
chronology protection, AI-driven quantum simulations assess vacuum fluctuations and energy density 
limitations (Samar Hadou et al., 2021). 

  

 
Fig. 1 Fundamental & Basic unit of Artificial Neural Network System (ANNs) & Quantum Neural Network System (QNNs) 

 
This study intends to offer a computational framework for comprehending the viability of traversable 
wormholes, the stability issues raised by exotic matter, and the consequences of causality violations by fusing 
AI with relativistic physics.  The results could further the investigation of quantum gravity, spacetime 
topology, and the basic boundaries of time manipulation and faster-than-light travel. 

2. Theoretical Framework 

2.1 Traversable Wormholes in General Relativity 

Einstein’s Field Equations (EFEs), which describe non-trivial topological structures connecting two different 
areas of spacetime, include hypothetical solutions known as traversable wormholes. Such solutions, which 
were first proposed in the framework of general relativity, necessitate the existence of exotic matter, which 
defies accepted energy conditions and poses serious stability issues. 
 
Einstein’s Field Equations and Wormhole Solutions 
The Einstein field equations are given by: 

Gμν + Λgμν = (8πG/c⁴) Tμν 
Where Gμν represents the Einstein tensor, Λ is the cosmological constant, gμν is the metric tensor, and Tμν is the 
stress-energy tensor. For a wormhole to be a valid solution, the metric must allow traversability, meaning an 
observer can pass through without encountering singularities or event horizons (Galina Weinstein. 2013).  
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Morris-Thorne Metric and Throat Conditions 
The most widely studied traversable wormhole solution is the Morris-Thorne metric, expressed as: 

ds² = -c² dt² + (dr² / (1 – b(r)/r)) + r² (dθ² + sin²θ dφ²) 
Where b(r) is the shape function that determines the wormhole geometry. The throat of the wormhole is 
defined at the minimum radius r₀, where b(r₀) = r₀, ensuring the structure remains open for traversal. The 
critical condition for traversability is flare-out, requiring that: 

b’(r₀) < 1R 
Which necessitates the presence of exotic matter to satisfy the required spacetime curvature (Lemos, José 
2003). 
 

Stability Conditions and Energy Constraints 
Wormhole stability depends on the behavior of the stress-energy tensor, which is governed by various energy 
conditions: 

Null Energy Condition (NEC): Tμν kμ kν ≥ 0 (violated for exotic matter). 
Weak Energy Condition (WEC): Tμν uμ uν ≥ 0 (ensures positivity of energy density). 
Dominant Energy Condition (DEC): Tμν uμ uν ≥ 0 with energy flow timelike or null. 
Strong Energy Condition (SEC): (Tμν - ½ gμν T) uμ uν ≥ 0 (often violated in wormhole solutions) (Kontou, E.-A. 
2024).  

Additionally, stability analysis incorporates the Raychaudhuri equation, which describes the evolution of 
geodesic congruences: 

(dθ/dτ) = - (1/3) θ² - σμνσμν + ωμνωμν – Rμν uμ uν 
Where θ represents expansion, σμν is the shear tensor, ωμν is the vorticity, and Rμν uμ uν is the Ricci tensor 
contribution. For a stable traversable wormhole, expansion must remain non-negative, requiring the violation 
of NEC (Kar, S., & Sengupta, S. 2007).   

Thus, the existence of stable, traversable wormholes remains an open challenge in general relativity, 
necessitating novel approaches such as AI-driven simulations to analyze their dynamics and stability 
conditions. 

2.2 Closed Timelike Curves and Causal Loops 

Formation of Closed Timelike Curves (CTCs) in Wormhole Solutions 
Theoretically, a traversable wormhole might create closed timelike curves (CTCs), which would allow an item 
or observer to travel back in time.  Classical ideas of causation are directly violated by this event.  The 
spacetime metric, in which a timelike worldline creates a loop, is associated with the existence of CTCs. This is 
expressed mathematically as: 

Gμν dxμ dxν < 0 
For a wormhole to develop CTCs, the two mouths must have a time difference that allows an observer to travel 
through one and exit in the past. If one mouth undergoes relativistic motion or exists in a different 
gravitational potential, time dilation effects can lead to non-trivial causal loops. This time difference can be 
expressed as: 

Δτ = ∫(mouth A to mouth B) √g00 dt 
Where Δτ represents the proper time difference between the two wormhole mouths (Thorne, K. S. 1992).   
 

Causality Violation and Temporal Paradoxes 
The existence of CTCs leads to major causality paradoxes, including: 
The Grandfather Paradox: A time traveler could go back and prevent their own existence, leading to a logical 
contradiction. 
The Bootstrap Paradox: Information or objects could exist in a closed causal loop with no clear origin, violating 
information conservation laws. 

These paradoxes can be analyzed using the Killing vector field ξμ, which determines whether a given 
trajectory is timelike or spacelike: 

ξμ = ∂/∂t 
If this vector field becomes spacelike (gμνξμξμ > 0) in certain regions, it indicates a violation of causality, 
allowing for CTC formation (Sfetcu, Nicolae. 2019).  

2.3 Self-Consistency Principles in Time Travel 

To address these paradoxes, several self-consistency principles have been proposed: 

https://worldbiologica.com/
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Novikov’s Self-Consistency Principle: Any event that would create a paradox has a probability of zero. Only self-
consistent timelines can occur. This principle can be mathematically expressed as: 

dP/dt = 0 
where P represents the probability of an event occurring in a way that alters past conditions (Solnyshkov, D. 
D., & Malpuech, G. 2020).   
Deutsch’s Model in Quantum Mechanics: This theory suggests that quantum states evolve in a self-consistent 
manner when subjected to CTCs. The evolution of the density matrix ρ is given by: 

ρCTC = Trsys (Uρsys ⊗ ρCTCU†) 
where U is the unitary evolution operator ensuring that quantum information remains consistent over time 
(Dejonghe, Richard. et al., 2009).  

2.4 Hawking’s Chronology Protection Conjecture 

Stephen Hawking put forth the Chronology Protection Conjecture, which postulates that quantum processes 
inhibit the production of CTCs in order to avoid causality violations.  This conjecture states that wormhole 
stability is disrupted by the enormous stress-energy generated by vacuum oscillations in quantum field theory 
close to CTC borders. 
The expectation value of the stress-energy tensor in curved spacetime follows: 

⟨Tμν⟩ ∼ 1/r⁴ 
Which diverges as r → 0, preventing CTCs from forming. If this conjecture holds, then stable time machines via 
traversable wormholes are theoretically impossible, preserving global causality (Hawking, S. W. 1992). 

2.5 AI in Theoretical Physics 

Applications of Machine Learning in General Relativity and Quantum Mechanics 
In theoretical and applied physics, machine learning (ML) has become a potent instrument that provides 
innovative solutions to challenging issues in quantum mechanics (QM) and general relativity (GR).  ML-based 
approaches are a possible substitute for computationally costly traditional methods for solving Einstein’s field 
equations and quantum wavefunctions (He, YH. 2024). 
 

Physics-Informed Neural Networks (PINNs) for Solving Differential Equations 
Solving the nonlinear differential equations governing spacetime geometry and quantum states is a major 
challenge in both GR and QM.  A data-driven method for resolving such equations while taking physical 
restrictions into account is offered by Physics-Informed Neural Networks (PINNs) (He, YH. 2024). 

2.6 Application in General Relativity 

Einstein’s field equations (EFEs) can be roughly solved by PINNs, especially in situations like near black hole 
singularities when numerical approaches are ineffective. They are helpful in forecasting the stability of 
traversable wormholes, where managing nonlinear equations is necessary to solve for exotic matter 
distributions. 
A general form of Einstein’s field equations solved using PINNs is: 

Gμν + Λgμν = 8πTμν 

where Gμν is the Einstein tensor, Λ is the cosmological constant, and Tμν represents the stress-energy tensor. 
PINNs learn solutions by minimizing residuals in these equations (Durrani, Ijaz. (2024).   

2.7 Application in Quantum Mechanics 

PINNs have been applied to solve the Schrödinger equation, predicting energy eigenvalues and wavefunctions 
with high precision: 

iħ (∂ψ/∂t) = Ĥψ 
Where ψ is the wavefunction and Ĥ is the Hamiltonian operator. 
 

AI-Based Anomaly Detection in Physical Systems 
AI and deep learning play a crucial role in detecting anomalies in complex physical systems, particularly in 
gravitational wave signals, black hole mergers, and quantum entanglement dynamics (Liam Harcombe, 
Quanling Deng, et al. 2023). 
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Table 1 Overview of Theoretical Framework of Traversable Wormholes, Causality, and AI in Theoretical Physics 

Section Topic Key Concepts 
Mathematical 

Representation 
References 

Traversable 
Wormholes in 

General 
Relativity 

 

Einstein’s Field 
Equations (EFEs) 

Einstein’s Field 
Equations (EFEs), 

exotic matter, 
traversability 

conditions 

Gμν + Λgμν = 
(8πG/c⁴) Tμν 

Galina Weinstein 
(2013) 

Morris-Thorne 
Metric 

Shape function b(r), 
throat condition r₀, 
flare-out condition 

Ds² = -c² dt² + (dr² 
/ (1 – b(r)/r)) + r² 
(dθ² + sin²θ dφ²) 

Lemos, José (2003) 

Stability and Energy 
Conditions 

NEC, WEC, DEC, SEC, 
Raychaudhuri 

equation 

(dθ/dτ) = - (1/3) θ² 
- σμνσμν + ωμνωμν – 

Rμν uμ uν 

Kontou, E.-A. 
(2024); Kar, S., & 

Sengupta, S. (2007) 

Closed Timelike 
Curves (CTCs) 

and Causal 
Loops 

Formation of Closed 
Timelike Curves 

(CTCs) and Causal 
Loops 

Time travel, 
causality violation, 

time dilation effects 

Δτ = ∫(mouth A to 
mouth B) √g00 dt 

Thorne, K. S. 
(1992) 

 

Causality Paradoxes 

Grandfather 
paradox, bootstrap 

paradox, Killing 
vector field 

ξμ = ∂/∂t 
 

Sfetcu, Nicolae 
(2019) 

Self 
Consistency 
Principles in 
Time Travel 

Novikov’s Self-
Consistency 

Principle 

Any paradox-
creating event has 

zero probability 
 

dP/dt = 0 
 

Solnyshkov, D. D., & 
Malpuech, G. 

(2020) 

Deutsch’s Quantum 
Model 

Quantum state 
evolution in CTCs, 

unitary 
transformations 

 

ρCTC = Trsys (Uρsys ⊗ 
ρCTC

U†) 
 

Dejonghe, Richard 
et al. (2009) 

Hawking’s 
Conjecture 

Hawking’s 
Chronology 
Protection 
Conjecture 

Prevention of CTCs, 
vacuum fluctuations, 

stress-energy 
divergence 

⟨Tμν⟩ ∼ 1/r⁴ 
 

Hawking, S. W. 
(1992) 

 

Synergy of AI & 
Physics 

AI in Theoretical 
Physics 

ML applications in 
general relativity 

and quantum 
mechanics 

- He, YH. (2024) 

Physics 
Informed 

Neural Network 
System 

PINNs for Solving 
Einstein’s Equations 

ML-based numerical 
solutions, stability 

predictions for 
wormholes 

 

Gμν + Λgμν = 8πTμν 
Durrani, Ijaz. 

(2024) 
 

Synergy of AI & 
Quantum 
Physics 

AI in Quantum 
Mechanics 

Solving Schrödinger 
equation, quantum 

state predictions 
iħ (∂ψ/∂t) = Ĥψ 

(Liam Harcombe, 
Quanling Deng, et 

al. 2023) 

2.8 Future Directions 

Integrating deep learning and symbolic physics into hybrid AI models to bridge the gap between AI and basic 
physics.  Utilising quantum machine learning (QML) to accelerate calculations in spacetime modelling and 
quantum field theory.  Speculating about new physics situations, such as unusual wormhole geometries and 
unique quantum states, using generative models.  By providing computationally effective substitutes for 
conventional physics simulations, these AI-driven developments have the potential to completely transform 
our comprehension of spacetime, gravity, and quantum phenomena. 

https://worldbiologica.com/
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Fig. 2 Diagram of Generic Wormhole in Two Spatial Dimensions Embedded in Three Spatial Dimensions 

3. Methodology 

This study analyses wormhole stability, identifies causal loop violations, and investigates chronological 
protection strategies using deep learning, reinforcement learning, and graph neural networks.  In order to 
investigate the viability of traversable wormholes and their implications for causality, AI-driven simulations 
integrate Einstein’s field equations, quantum fluctuations, and spacetime geometry. 

3.1 AI Model for Wormhole Stability Prediction 

Deep Learning Model Architecture 
A deep learning framework is developed to assess wormhole stability based on key physical parameters. 
 

Input Features 
Stress-energy tensor components (Tμν) 
Curvature scalar (R)  
Exotic matter density (ρexotic) 
Violations of energy conditions, including the Null Energy Condition (NEC), Weak Energy Condition 
(WEC), Dominant Energy Condition (DEC), and Strong Energy Condition (SEC) 

 

Processing 
Convolutional Neural Networks (CNNs): Extract spatial features from spacetime curvature tensors, modeling 
the structure of the wormhole throat. 
Recurrent Neural Networks (RNNs): Analyze temporal dependencies in wormhole evolution to detect dynamic 
instability. 
 

Output Predictions 
Stability score (Sstability), computed as a function of CNN and RNN outputs: 

Sstability = fCNN+RNN(Tμν, R, ρexotic) 
Throat collapse probability (Pcollapse) 
Violation of energy conditions, indicating the presence of exotic matter 

 

Reinforcement Learning for Stability Optimization 
Reinforcement learning is applied to optimize negative energy distribution, improving wormhole stability. 
State Space: Energy-momentum tensor configurations 
Action Space: Adjustments to exotic matter distribution 
Reward Function: Maximizing stability while minimizing the need for exotic matter, given by: 

R = 1 / (1 + Σ |Tμν – Tμνoptimal|) 

https://worldbiologica.com/
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3.2 AI for Causal Loop and Paradox Detection 

Temporal Geodesic Analysis Using Neural Networks 
AI models use Einstein’s geodesic equation to detect closed time like curves (CTCs) and causal anomalies: 

d²xμ / dτ² + Γμαβ (dxα / dτ) (dxβ / dτ) = 0 
Neural networks predict geodesic behavior and identify when worldlines form closed loops. 

Graph Neural Networks (GNNs) analyze causal structures in simulated spacetimes to detect violations of 
chronology protection. 

The probability of CTC formation (PCTC) is calculated as a function of the metric tensor gμν and Christoffel 
symbols Γμαβ: 

PCTC = fGNN(gμν, Γμαβ) 
A high value of PCTC suggests potential causality violations, requiring further quantum backreaction analysis. 
 

Self-Consistency Validation with AI 
To examine time-travel paradoxes, AI-driven simulations integrate: 
Novikov’s Self-Consistency Principle: Ensuring that only logically consistent timelines emerge in AI-generated 
scenarios. 
Quantum-Informed Machine Learning: Using probabilistic quantum models to analyze paradox resolution 
mechanisms. 
The probability of a paradox-free solution (Pparadox-free) is given by: 

Pparadox-free = Σi Pi e(-Si / ħ) 
Where Si represents the action integral contributions across different time-evolution pathways. 

3.3 AI for Chronology Protection Mechanisms 

This study explores AI-based detection of quantum fluctuations and vacuum energy densities that may 
prevent CTC formation, supporting Hawking’s Chronology Protection Conjecture. 
 

Quantum Fluctuation Detection 
AI models simulate quantum vacuum fluctuations near wormhole throats to determine energy conditions that 
prevent time-travel loops. 

Physics-Informed Neural Networks (PINNs) solve energy-momentum constraints to assess whether 
quantum effects destabilize CTC formation: 

⟨Tμν⟩ren = fPINN(ψ, gμν) 
Where ⟨Tμν⟩ren represents the renormalized energy-momentum tensor influenced by vacuum fluctuations. 
 

Simulating Energy Density Constraints 
AI-driven Monte Carlo simulations analyze fluctuations in energy density at the wormhole throat. 

These models evaluate whether quantum backreaction effects reinforce chronology protection by 
destabilizing CTCs. 

This methodology examines chronology protection methods, analyses wormhole stability, and detects 
causal violations by combining deep learning, reinforcement learning, and quantum-informed AI.  A 
computational foundation for comprehending the viability of time travel, traversable wormholes, and self-
consistent spacetime evolution is offered by AI-driven simulations. 

4. Experimental Setup & Computational Simulations 

4.1 Numerical Relativity Simulations 

This study uses AI-assisted numerical relativity simulations to predict wormhole stability and identify possible 
violations of causality.  In order to dynamically describe the evolution of spacetime curvature, Einstein’s Field 
Equations (EFEs) are solved using deep learning frameworks like TensorFlow and PyTorch combined with 
Physics-Informed Neural Networks (PINNs). 

4.2 Implementation of EFEs Solvers using AI  

Einstein’s Field Equations and AI-Based Solvers 
Einstein’s Field Equations describe the relationship between spacetime curvature and the distribution of 
energy and momentum (Galina Weinstein. 2013): 

Gμν + Λgμν = (8πG/c⁴) Tμν 
Where: 

https://worldbiologica.com/
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Gμν represents the Einstein tensor, which encodes spacetime curvature. 
Λ is the cosmological constant. 
Tμν is the stress-energy tensor. 
G is the gravitational constant. 
c is the speed of light. 

In order to effectively forecast wormhole dynamics, AI-based solutions combine these equations utilising deep 
learning and automatic differentiation.  Wormhole stability may be determined more precisely thanks to 
PINNs, which make sure the solutions follow the restrictions set by the EFEs. 
 

AI-Assisted Finite Element Analysis for Spacetime Metrics 
Finite Element Methods (FEMs) are combined with AI models for accurate spacetime discretization. The 
numerical approach follows these steps: 

1. Input: Spacetime metric components, energy conditions (such as the Null Energy Condition, Weak 
Energy Condition, Strong Energy Condition, and Dominant Energy Condition), and exotic matter 
distributions. 

2. Processing: AI-enhanced FEMs break down spacetime into computational elements and iteratively 
solve the EFEs. 

3. Output: Stability evolution of wormhole throats, detection of singularities, and identification of event 
horizons. 

The finite element formulation ensures numerical stability and convergence by using weighted sums of 
differential equations governing spacetime curvature. 

4.3 Synthetic Dataset for AI Model Training 

To train deep learning models for wormhole stability prediction, causal loop detection, and possible 
chronology violations, a synthetic dataset is created.  Large-scale data generation and effective model training 
are accomplished through the utilisation of high-performance computing (HPC) infrastructure. 
 

Generation of Wormhole Geometries and Stability Profiles 
AI-driven numerical relativity simulations produce thousands of traversable wormhole configurations based 
on the Morris-Thorne metric (Lemos, José 2003): 

ds² = -c² dt² + (dr² / (1 – b(r)/r)) + r² (dθ² + sin²θ dφ²) 
Where b(r) is the shape function that determines the properties of the wormhole throat. 
The dataset includes: 

Classifications of stable and unstable wormholes based on exotic matter conditions and metric 
parameters. 
Time evolution sequences used to train Recurrent Neural Networks (RNNs) and Transformers for 
predicting spacetime dynamics. 
Geometric perturbations and their impact on stability metrics. 

 

Simulated Closed Timelike Curves (CTCs) for Causal Violation Detection 
To detect closed timelike curves (CTCs), AI-generated geodesic solutions analyze potential causality violations 
by solving the geodesic equation (Thorne, K. S. 1992): 

d²xμ / dτ² + Γμαβ (dxα / dτ) (dxβ / dτ) = 0 
Where Γμ

αβ are the Christoffel symbols of the wormhole metric. 
Graph Neural Networks (GNNs) analyze the causal structure of these solutions to identify paradoxical loops, 
which could indicate violations of causality. 
 

AI for Chronology Protection and Quantum Fluctuations 
Quantum vacuum fluctuations that might uphold Hawking’s Chronology Protection Conjecture are assessed 
via AI simulations.  Spacetime topology may be impacted by the estimation of Casimir energy contributions 
and vacuum energy variations using machine learning algorithms (Valamontes, Antonios, 2024).  The 
probability of CTC creation under various spacetime conditions is quantitatively evaluated using Monte Carlo 
simulations (Bonate, Peter. 2001). 
 

High-Performance Computing for AI Model Training 
HPC clusters are used to perform intricate spacetime calculations:  For effective geodesic trajectory analysis, 
deep learning frameworks like TensorFlow and PyTorch are parallelised.  Distributed training is made 
possible by GPU/TPU clusters, which speed up calculations related to causality and stability.  To enhance 

https://worldbiologica.com/
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model generalisation, generative models such as Variational Autoencoders (VAEs) and Generative Adversarial 
Networks (GANs) create extra wormhole configurations (Sharma, Himanshu. 2019). 

This study offers accurate predictions for wormhole stability, causal loop identification, and AI-based 
analysis of chronology protection measures by combining numerical relativity, deep learning, and high-
performance computing.  A computational framework for investigating the viability of traversable wormholes 
and time travel scenarios within the bounds of general relativity and quantum field theory is created by this 
combination of physics-driven AI and massive synthetic datasets. 

 

 
Fig. 3 Integrating of ANNs and QNNs for Enhanced Computational Simulations 

4.4 Implementation of Python Code or Numerical Relativity Simulations  

Wormhole stability study using AI-assisted numerical relativity simulations is implemented in the Python code 
below.  It combines deep learning with Finite Element Methods (FEMs), Physics-Informed Neural Networks 
(PINNs), and the creation of synthetic datasets for wormhole metrics.  Einstein’s Field Equations (EFEs) are 
solved using SciPy and TensorFlow. 

import numpy as np 
import tensorflow as tf 
import scipy.optimize as opt 
import matplotlib.pyplot as plt 

 

# Define Einstein’s Field Equations (EFEs) Loss Function for PINNs 
Def einstein_tensor(R, T, G=6.67430e-11, c=3.0e8, Lambda=0): 
“””Computes the Einstein Tensor Gμν for AI-assisted relativity.””” 
Return R + Lambda * np.identity(lenR) – (8 * np.pi * G / c**4) * T 

 

# Define Neural Network Model for Solving EFEs 
Class PINN(tf.keras.Model): 
Def __init__(self, layers): 
Super(PINN, self).__init__() 
Self.hidden_layers = [tf.keras.layers.Dense(layer, activation=”tanh”) for layer in layers] 
Self.output_layer = tf.keras.layers.Dense(1) 
Def call(self, x): 
For layer in self.hidden_layers: 
X = layer(x) 
Return self.output_layer(x) 

 

# Generate Synthetic Dataset for Wormhole Metrics 
Def generate_wormhole_data(num_samples=1000): 
“””Generates synthetic wormhole metrics based on Morris-Thorne metric.””” 

    R = np.linspace(1, 10, num_samples)  # Radius values 
B_r = r / (1 + np.exp(-0.5 * (r – 5)))  # Shape function for the wormhole throat 
Stability = np.where(b_r < r, 1, 0)  # Stable if b® < r 
Return r, b_r, stability 

 

https://worldbiologica.com/
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# Define the Geodesic Equation Solver 
Def geodesic_equation(x, g): 
“””Solves geodesic equations using Christoffel symbols for detecting CTCs.””” 
Dx = np.gradient(x) 
D2x = np.gradient(dx) 
Gamma = 0.5 * np.linalg.inv(g) @ np.gradient(g, axis=0) 
Return d2x + np.einsum(‘ijk,j,k->I’, Gamma, dx, dx) 

 

# High-Performance Computing Optimization 
Def optimize_wormhole(): 
“””Uses TensorFlow gradient descent for optimizing stability.””” 
R, b_r, stability = generate_wormhole_data() 
Model = PINN([32, 32, 32])  # Deep learning model 
Optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) 
@tf.function 
Def train_step(): 
With tf.GradientTape() as tape: 
Predictions = model(r.reshape(-1, 1)) 
Loss = tf.reduce_mean(tf.square(predictions – stability.reshape(-1, 1))) 
Gradients = tape.gradient(loss, model.trainable_variables) 
Optimizer.apply_gradients(zip(gradients, model.trainable_variables)) 
Return loss 

     
# Train the model for wormhole stability prediction 

For epoch in range(1000): 
Loss_value = train_step() 
If epoch % 100 == 0: 
Print(f”Epoch {epoch}: Loss = {loss_value.numpy()}”) 
Return model 

 

# Run Optimization and Simulations 
If __name__ == “__main__”: 

     
# Generate wormhole stability dataset 

R, b_r, stability = generate_wormhole_data() 
 

# Train PINN model for wormhole stability prediction 
Trained_model = optimize_wormhole() 

 

# Plot Results 
    Plt.figure(figsize=(10, 5)) 
    Plt.plot(r, b_r, label=”Wormhole Shape Function b(r)”) 
    Plt.scatter(r, stability, color=’red’, label=”Stability (1=Stable, 0=Unstable)”) 
    Plt.xlabel(“Radius(r)”) 
    Plt.ylabel(“Metric Function b(r)”) 
    Plt.title(“AI-Assisted Wormhole Stability Analysis”) 
    Plt.legend() 
    Plt.show() 
 

Explanation of the Code 
1. Solving Einstein’s Field Equations (EFEs) using AI: The einstein_tensor() function models EFEs, 

incorporating the cosmological constant and stress-energy tensor. 
A deep learning model (PINN) approximates solutions dynamically. 

2. Finite Element Analysis (FEMs) for Spacetime Metrics: The function generate_wormhole_data() 
creates synthetic wormhole metrics using the Morris-Thorne metric. 

Stability is classified based on the wormhole throat condition . 
3. Detecting Closed Timelike Curves (CTCs): The geodesic_equation() function solves geodesic 

equations to identify causality violations. 
Christoffel symbols are computed to analyze geodesic trajectories. 

https://worldbiologica.com/
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4. Training AI Model Using HPC: The optimize_wormhole() function trains the PINN model using 
TensorFlow’s automatic differentiation. 

High-performance optimization is performed using Adam gradient descent. 
5. Visualization of Wormhole Stability: The results are plotted to show the shape function  and 

stability conditions. 
 

Expected Outcome 
AI models trained on synthetic wormhole metrics predict stability conditions. 
Simulated closed timelike curves (CTCs) identify possible violations of causality. 
High-performance computing (HPC) accelerates Einstein’s Field Equations solutions. 
Visualization of the wormhole shape function  and its stability profile. 

5. Results and Discussion 

5.1 Performance of AI Models in Predicting Wormhole Stability 

A synthetic dataset of traversable wormhole configurations was used to assess the AI models created for 
wormhole stability prediction.  The models used Recurrent Neural Networks (RNNs) for temporal evolution 
analysis and Convolutional Neural Networks (CNNs) for geometric feature extraction. 
 

Evaluation Metrics 
Forecast for Stability  Accuracy: Using input parameters such the exotic matter density, curvature scalar, and 
stress-energy tensor, the AI model predicted wormhole stability with an accuracy of 85–92% (Wani, Aasim 
Ayaz. 2025).  Energy Condition Violation Detection: According to Chen, ZC. Et al. (2024), the model 
successfully and highly precisely classified violations of NEC, WEC, SEC, and DEC conditions.  Probability of 
Throat Collapse: The AI model produced probabilistic predictions of throat collapse under various exotic 
matter distributions, which showed good agreement with simulations of numerical relativity. 

1. Accuracy: Evaluates how accurate the model’s predictions are overall. 
Accuracy = TP + TN/TP + TN + FP + FN 

2. Precision: Percentage of accurate positive predictions made for a specific response class. 
Precision = TPA/TPA + FPA 

3. Recall: Evaluates the model’s accuracy in identifying real positive cases. 
RecallA = TPA/TPA + FFP 

4. F1-Score: The harmonic mean of precision and recall. 
F1A = 2× PrecisionA × RecallA/PrecisionA + RecallA 

 

 
Fig. 4 Confusion Matrix for The Evaluation of Code Efficiency 

 

Key Findings 
Using the Morris-Thorne measure, AI models were able to accurately forecast both stable and unstable 
wormhole forms.  Critical exotic matter thresholds required to preserve traversability were found using deep 
learning models.  The location of negative energy was optimised by Reinforcement Learning (RL) to increase 
the lifespan of wormholes. 

https://worldbiologica.com/
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5.2 AI’s Effectiveness in Detecting Causal Loops and Self-Consistency Violations 

The AI-based causal loop detection framework leveraged Graph Neural Networks (GNNs) and temporal 
geodesic solvers to analyze wormhole-induced closed timelike curves (CTCs). 
 

Evaluation Metrics 
CTC Detection Accuracy: When cross-checked with geodesic solutions of Einstein’s equations, the AI model 
detected possible causality violations with a high percentage recall (Brun, Todd, 2003).  Self-Consistency 
Violation Identification: Using Novikov’s self-consistency principle, quantum-informed AI models accurately 
estimated the likelihood of paradox development. 
 

Key Findings 
Einstein’s geodesic equations were effectively included into AI algorithms to forecast possible CTC forms.  
Wormhole solution causality was precisely traced by graph-based AI models.  Paradox probabilities were 
revealed by using AI-generated time-travel simulations to validate self-consistency. 

5.3 Potential Physical Insights into Time-Travel Feasibility 

The results of the study offer various theoretical perspectives on the viability of time travel in the context of 
general relativity and quantum mechanics:  Exotic matter restrictions may be a limiting issue in maintaining 
long-term traversable wormholes, according to AI-driven stability studies.  The discovery of causal loops 
shows that while CTCs are theoretically feasible, they necessitate novel matter distributions that are outside 
the realm of current physical models.  Hawking’s Chronology Protection Conjecture AI simulations suggest 
that quantum fluctuations may cause CTCs to become unstable, hence confirming causality. 

5.4 Limitations and Assumptions of the Study 

While AI-based models have demonstrated promising results, several limitations and assumptions must be 
acknowledged: 
 

Theoretical Assumptions 
The static, spherically symmetric wormhole solutions assumed by the Morris-Thorne metric might not apply 
to dynamically changing spacetime topologies.  The lack of detailed modelling of quantum gravity effects 
limited its applicability to semi-classical general relativity. 
 

Computational Constraints 
The artificial training data used by AI algorithms might not accurately reflect actual physical situations in 
severe spacetime curvatures.  Large-scale AI simulations required high-performance computing (HPC), which 
presented scalability issues for real-time analysis. 
 

Physical Constraints 
The study's assumed exotic matter distributions are entirely theoretical and have not been confirmed by 
experiment.  Predictions of CTC formation may be greatly impacted by the study’s assumption of classical 
general relativity and lack of consideration for quantum gravitational corrections.  A new paradigm for 
researching wormhole stability, causal loops, and chronology protection methods is made possible by the 
combination of deep learning, numerical relativity, and high-performance computing.  Practical time travel is 
limited by basic physical constraints, such as exotic matter requirements and quantum effects, even though AI 
models show great accuracy in forecasting stability and identifying causality violations.  To improve these 
predictions, future studies could include experimental confirmations of exotic matter features and quantum 
gravity models. 

6. Conclusion and Future Work 

In order to analyse traversable wormholes, anticipate their stability, and identify causality violations, artificial 
intelligence (AI) provides a novel paradigm.  Deep learning models evaluate exotic matter distributions, 
curvature scalars, and stress-energy tensors, while reinforcement learning maximises the placement of 
negative energy for stability.  The investigation of Hawking’s Chronology Protection Conjecture is aided by AI-
driven temporal geodesic solvers that identify self-consistency violations and closed timelike curves (CTCs).  
By improving theoretical physics and enabling large-scale spacetime simulations, these developments improve 
numerical relativity.  Quantum-informed machine learning (ML) models and physics-informed neural 
networks (PINNs) are combined to bridge the gap between quantum mechanics and relativity.  AI-assisted 

https://worldbiologica.com/
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astrophysical wormhole detection and quantum gravity theories such as loop quantum gravity (LQG) and 
string theory should be developed in future studies. Quantum computing has the potential to enhance geodesic 
analysis and time-travel simulations.  AI-driven methods offer fresh perspectives on spacetime, causality, and 
the basic makeup of the cosmos, despite ongoing difficulties.  
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