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 The amalgamation of Artificial Intelligence (AI) and Internet of Things (IoT) 
technologies is revolutionising livestock health monitoring, offering novel ways to 
improve animal welfare and productivity. This document introduces the 
CogniHerd system. “CogniHerd amalgamates two root words: “Cogni,” derived 
from the Latin “cognitio,” signifying knowledge or awareness, which embodies the 
AI-driven intelligence and data analysis within the system, and “Herd,” originating 
from the Old English “heord,” denoting a collective of domesticated animals. 
CogniHerd represents the astute management and surveillance of livestock with 
AI and IoT technologies to enhance health and welfare, employing an ESP8266, 
Arduino Uno, audio sensors, temperature sensors, and video sensors for real-time 
health monitoring of animals. The system gathers essential measurements, 
encompassing physiological factors and behavioural data. CogniHerd employs 
advanced AI methodologies, including anomaly detection and predictive 
modelling, to facilitate the early diagnosis of health issues, hence enhancing 
informed decision-making. A case study of a participating farm illustrates the 
system’s efficacy in identifying health anomalies and enhancing livestock 
management, attaining an accuracy of 0.9. The study also examines issues with 
data privacy, infrastructure demands, and interoperability. The findings 
underscore the CogniHerd system’s capacity to augment conventional cattle 
management approaches, facilitating sustainable agriculture via enhanced health 
monitoring and proactive interventions. 

 

1. Introduction 

1.1 “CogniHerd ” Term Origin & Definition 

“COGNI” = Latin “cognitio” (knowledge/awareness), “HERD” = Classical English “heord” (domesticated animals). 
“CogniHerd, a term introduced by Gurjant Singh as a principal title for his project, amalgamates two root 
words: ‘Cogni,’ derived from the Latin ‘cognitio,’ signifying knowledge or awareness, which embodies the AI-
driven intelligence and data analysis within the system, and ‘Herd,’ originating from the Old English ‘heord,’ 
denoting a collective of domesticated animals.” 
___________________________ 
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In unison, 
“CogniHerd denotes the astute administration and surveillance of livestock through AI and IoT technologies to 
enhance health and welfare.” 
CogniHerd is a comprehensive system developed to oversee animal health through the integration of Artificial 
Intelligence (AI) and Internet of Things (IoT) technology. It utilises IoT devices, including sensors (e.g., audio, 
temperature, camera), and AI algorithms (e.g., anomaly detection, predictive modelling) to gather and analyse 
real-time physiological, behavioural, and environmental data from livestock. The technology facilitates early 
disease identification, behavioural observation, and proactive health administration, assisting farmers in 
optimising herd management, enhancing animal welfare, and increasing farm productivity. 

 
Fig. 1 Schematic Illustration Of A Typical Block Diagram Of An AI (Artificial Intelligence) System 

 

1.2 Overview of Livestock Health Challenges 

Livestock health management is fundamental to agricultural production and sustainability, profoundly 
influencing food security and economic results. Conventional approaches to monitoring cattle health 
predominantly depend on visual assessments, manual documentation, and delayed reactions to health 
concerns, frequently leading to less than ideal results. Health issues including mastitis in dairy cattle and 
respiratory infections in poultry sometimes go unnoticed until they escalate, resulting in diminished output, 
heightened veterinary expenses, and possible animal fatalities (Abubakar, M. et al., 2020).  

The expanding magnitude of contemporary agriculture exacerbates these difficulties. In extensive 
operations involving thousands of animals, it is virtually unfeasible for farmers to manually monitor and 
assess the health of each individual animal efficiently. This leads to the recurrent late identification of 
infections, intensifying the dissemination of illnesses throughout the herd or flock (Rasu, Eeswaran. Et al., 
2022). Furthermore, rural regions frequently encounter a deficiency of veterinary practitioners, complicating 
early diagnosis and treatment (Villarroel, Aurora et al., 2010).  

Moreover, due to increasing consumer and regulatory emphasis on animal welfare, producers face 
pressure to adhere to rigorous animal health and welfare requirements. Effective monitoring is essential for 
safeguarding animal welfare and sustaining the economic viability of agricultural enterprises (Sardar, 
Muhammad et al., 2023). Conventional approaches also fail to consider external elements, such as climatic 
conditions (e.g., temperature or humidity), which can significantly impact livestock health if not regularly 
monitored (Habeeb, AA. et al., 2023). 

1.3 Role of Emerging Technologies 

Innovative technologies like Artificial Intelligence (AI) and the Internet of Things (IoT) are revolutionising 
cattle health monitoring by providing a more automated and data-centric methodology. The Internet of Things 
(IoT) encompasses the utilisation of interconnected devices such as sensors, wearable trackers, and cameras 
to collect real-time data on diverse health metrics, including temperature, heart rate, mobility, and feeding 
behaviours. These devices produce continuous data streams that can be analysed with AI algorithms, which 
are proficient at detecting patterns and abnormalities that may signify early health issues (Chaudhry, Abdul. Et 
al., 2020).  

The amalgamation of AI and IoT empowers farmers to transition from reactive to proactive health 
management. AI-powered systems can identify subtle behavioural or physiological changes that occur before 
to the manifestation of clinical symptoms, rather than waiting for overt evidence of sickness (Wei-Hsun Wang 
& Wen-Shin Hsu, 2023). Minor alterations in locomotion, dietary behaviours, or physiological indicators may 

https://worldbiologica.com/


                                                             International Journal of Innovative Scientific Research, 2025, Vol. 3, Issue 1 

ISSN: 3008-5039 || © 2025 || Published by: World BIOLOGICA    13 

indicate the preliminary stages of illness. AI-driven predictive analytics can anticipate health hazards, enabling 
farmers to take preventive measures before diseases proliferate or inflict substantial damage (Sk Injamamul 
Islam et al., 2024). CogniHerd  exemplifies an AI-IoT system that delivers a holistic strategy for animal health, 
offering real-time information and automatic notifications for prompt intervention.  
AI and IoT technology extend beyond disease detection. They serve a vital role in enhancing breeding 
procedures, controlling nutrition, and assuring compliance with animal welfare requirements. AI algorithms 
can track reproductive cycles and forecast optimal breeding periods, enhancing animal productivity (Wassie, 
Awoke. Et al., 2024). Likewise, IoT-enabled sensors can monitor animals’ feed consumption and weight 
increase, assisting farmers in optimising nutrition management (Muhammad Osama Akbar et al., 2020). These 
technologies jointly enhance a comprehensive approach to animal health and welfare. 

 
Fig. 2 Artificial Neural Network System (ANNs), Building Blocks of AI 

1.4 Purpose and Scope of the Paper 

This study examines the progress in AI and IoT technologies, emphasising its implementation in animal health 
monitoring within the CogniHerd  framework. The objective is to examine the present condition of AI-IoT 
integration in agriculture, evaluating its advantages for real-time disease diagnosis, predictive health 
management, and animal welfare. The evaluation will also address the constraints of large-scale 
implementation of these technologies, including data privacy issues, substantial initial expenditures, and the 
necessity for dependable internet connectivity in remote regions (Abreu, C. & van Deventer, Jacobus. 2022).  
This review aims to emphasise successful case studies, demonstrate how AI and IoT are improving cattle 
health outcomes, and offer insights into the future possibilities of smart agricultural technology. This initiative 
is to enhance the existing knowledge on precision agriculture and provide practical guidance for farmers, 
researchers, and policymakers focused on improving livestock health management through technological 
innovation (Curti, PF. 2023). 
 

 
Fig. 3 Homology & Analogy of Natural Neuron (Human Neuron) vs Artificial Neuron (Machine Neuron) 
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Fig. 4 Evolution of Artificial Intelligence (AI) 

2. Literature Review 

The emergence of Artificial Intelligence (AI) and the Internet of Things (IoT) has transformed multiple sectors, 
including agriculture. This literature review examines the present research and uses of AI and IoT 
technologies in animal health monitoring, emphasising significant findings, improvements, and problems. 

2.1 AI Applications in Livestock Health Monitoring 

Artificial intelligence has gained prominence in agriculture, especially in the monitoring of animal health. 
Machine learning algorithms, particularly those employing deep learning, have proved essential in analysing 
intricate datasets produced by IoT devices. Researchers have effectively utilised convolutional neural 
networks (CNNs) to analyse images captured by cameras observing animal behaviour. These systems can 
identify minor alterations in animal posture or movement, signifying possible health concerns (AlZubi Ali 
Ahmad, Al-Zu’bi Maha. 2023). These applications illustrate the effectiveness of AI in improving disease 
identification and facilitating prompt interventions.  

Predictive analytics, a domain of AI application, facilitates the predicting of health-related occurrences 
utilising past data. Through the analysis of trends in animal behaviour and environmental variables, AI 
systems can forecast disease outbreaks, facilitating preventive interventions. A study by Wassie, Awoke, et al. 
(2024) underscored the efficacy of AI in forecasting health outcomes, accentuating the capacity of these 
technologies to improve comprehensive herd management. 

2.2 IoT Innovations in Livestock Monitoring 

The significance of IoT in monitoring animal health is substantial. IoT technologies, encompassing sensors and 
wearable devices, provide real-time data acquisition on diverse health parameters, including heart rate, 
temperature, and activity levels. These technologies furnish farmers with instantaneous insights into their 
livestock’s health, facilitating swift responses to arising issues (R., Balamurugan & Alagarsamy, Manjunathan. 
2023).  

An important benefit of IoT devices is their capacity to provide detailed health profiles for individual 
animals. By gathering continuous data over time, farmers can monitor trends and recognise variations from 
standard behaviour, facilitating early identification of potential health issues. Unold, O. et al. (2020) discovered 
that the incorporation of IoT technology in cattle management markedly enhanced the precision of health 
monitoring and diminished the response time to health concerns. 

2.3 Synergy of AI and IoT 

The integration of AI and IoT technology provides significant advantages for monitoring animal health. 
Artificial Intelligence can evaluate the extensive data produced by Internet of Things devices, yielding 
actionable insights that enhance decision-making. This collaboration improves real-time monitoring, 
predictive diagnoses, and autonomous interventions, resulting in a more efficient livestock management 
system (Ding, Mike & Mahadasa, Ravikiran, 2019).  

https://worldbiologica.com/
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AI systems can analyse data from wearable sensors to detect trends that signify health problems, such as 
alterations in food behaviour or diminished activity levels. By integrating these insights with environmental 
data, including temperature and humidity, farmers may make informed decisions regarding necessary 
treatments to sustain animal health. Neethirajan, S. (2024) demonstrates that this integration enhances 
disease management and overall herd productivity. 

2.4 Case Studies and Real-World Implementations 

Numerous case studies demonstrate the effective application of AI-IoT systems in monitoring livestock health. 
A prominent instance is the FarmWizard platform, which amalgamates IoT sensors and AI analytics to assess 
cattle health. This system has shown considerable advancements in disease identification and herd 
management, offering farmers real-time data and predictive insights (Darvesh, Karthika, et al., 2023).  

Nonetheless, obstacles persist in the implementation of AI-IoT systems in agricultural settings. Economic 
obstacles, like the elevated expenses of technology and infrastructure, can impede adoption, especially among 
small-scale farmers. Furthermore, technical obstacles, such as data integration and interoperability across 
diverse devices, must be resolved to guarantee flawless functionality (Hussein, Abbas, et al., 2024). 

2.5 Benefits and Ethical Considerations 

The advantages of incorporating AI and IoT in animal health monitoring are extensive. These technologies 
augment disease prevention, refine decision-making, and diminish labour expenses. Through the automation 
of data gathering and analysis, farmers can concentrate on strategic decision-making and enhance overall 
agricultural productivity (Kushagra Sharma & Shiv Kumar Shivandu, 2024). 

Nevertheless, ethical considerations must also be considered. Concerns over data privacy and the 
likelihood of diminished human engagement with livestock pose significant enquiries concerning the 
ramifications of automation in agriculture. Prioritising animal welfare is crucial as the agricultural industry 
increasingly depends on technology for livestock management (Coghlan, S., & Quinn, T. 2024). 

2.6 Future Directions and Innovations 

Anticipating the future, numerous advancements and improvements are projected to influence the domain of 
animal health monitoring. Advanced AI methodologies, like swarm intelligence and explainable AI, offer 
potential for augmenting system functionalities. Swarm intelligence facilitates decentralised decision-making 
by emulating the behaviours of social creatures, whereas explainable AI enhances transparency and 
confidence in AI systems (Li, Zhang, et al., 2023).  

Furthermore, the advancement of IoT technologies and the deployment of 5G networks will significantly 
improve real-time data transmission and processing capacities. The integration of modern sensors and high-
speed communication will provide increasingly complex applications, including remote monitoring and 
automated interventions (Dixit, Sheetal et al., 2024).  

The amalgamation of AI and IoT technology in animal health monitoring signifies a revolutionary change 
in agricultural methodologies. Despite notable progress, issues concerning cost, scalability, and ethical 
implications require resolution. Ongoing research and innovation are crucial for realising the complete 
potential of these technologies, resulting in healthier cattle and more sustainable agricultural operations. 

3. Materials and Methodologies 

This section delineates the materials and methodology employed in the development and deployment of AI 
and IoT technologies for cattle health monitoring, emphasising the design and application of the CogniHerd  
system. The approaches include data collecting, system architecture, artificial intelligence algorithms, and 
evaluation metrics. 

3.1 System Architecture 

The CogniHerd  system features a modular architecture that incorporates IoT devices, AI algorithms, and cloud 
computing services. The architecture comprises the following essential components:  
 
Internet of Things (IoT) Devices: This encompasses many sensors and wearable gadgets utilised on animals for 
ongoing surveillance. The sensors gather essential health parameters including temperature, heart rate, 
activity level, and environmental variables.  
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Frequently utilised devices comprise:  
 
Biometric sensors: These devices assess physiological characteristics such as heart rate and body temperature.  
 
GPS Trackers (Accelerometer): Employed to monitor the movement patterns and locations of cattle. 
Environmental Sensors: Quantify temperature, humidity, and more environmental variables influencing 
animal health.  
 
Data Processing Layer: This layer comprises edge computing devices that preprocess data from IoT sensors to 
minimise latency and bandwidth consumption. Edge devices preprocess and consolidate data prior to 
transmitting it to the cloud for additional analysis.  
 
Cloud Computing Services: The cloud platform facilitates the storage of substantial data quantities and the 
execution of intricate AI algorithms. This architecture permits scalable data analytics and supports the 
implementation of machine learning models. 

3.2 Data Collection 

Data gathering has two principal phases: real-time monitoring and historical data aggregation. 
 
Continuous Data Collection: Information is gathered incessantly from the IoT devices. Data streams are 
conveyed to edge computing devices via wireless communication protocols like LoRaWAN or NB-IoT. The data 
include physiological indicators, such as body temperature and heart rate. Behavioural data (e.g., activity 
levels, feeding behaviours) Environmental metrics (e.g., temperature, humidity, and air quality).  
 
Historical Data Accumulation: Data amassed over time is retained in the cloud database. This historical data 
underpins the training of AI models and the advancement of predictive analytics capabilities. 

3.3 AI Algorithms 

The AI element of the CogniHerd  system utilises various machine learning methodologies to examine the 
gathered data and extract meaningful insights. Principal algorithms comprise:  
 
Anomaly Detection: Algorithms like Isolation Forest and One-Class SVM are employed to detect atypical 
patterns in animal behaviour that may signify health problems. This method facilitates early disease 
identification.  
 
Predictive Modelling: Methods such as regression analysis and time-series forecasting are employed to 
anticipate health outcomes utilising past data. Models can predict probable disease outbreaks by examining 
patterns in physiological and environmental variables.  
 
Deep Learning: Convolutional neural networks (CNNs) are utilised for image analysis in the observation of 
livestock behaviour. Cameras positioned in barns may photograph livestock, while convolutional neural 
networks can categorise behaviours or detect health issues through visual indicators. 

3.4 Evaluation Metrics 

To evaluate the efficacy of the CogniHerd  system, various assessment measures are utilised:  
 
Accuracy and Precision: These measures assess the efficacy of predictive algorithms in accurately diagnosing 
health conditions. Accuracy is the ratio of properly predicted observations to the total number of observations, 
whereas precision quantifies the ratio of true positives to the aggregate of true positives and false positives.  
 
Response Time: The duration required for the system to identify a health abnormality and notify the farmer Is 
crucial. Reduced reaction times signify a more effective monitoring system.  
 
User Satisfaction: Surveys and comments from farmers are administered to assess the system’s usability and 
efficacy. Metrics of user satisfaction assist in pinpointing areas requiring enhancement. 

https://worldbiologica.com/
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3.5 Case Study Implementation 

To validate the effectiveness of the CogniHerd  system, a case study was conducted on a participating farm. 
The implementation involved: 
 
Deployment of IoT Devices: A selection of biometric sensors, GPS trackers, and environmental sensors was 
installed on the livestock. 
 
Training of AI Models: Historical data was utilized to train the predictive models. The models were iteratively 
refined based on feedback and additional data collected during the monitoring phase. 
 
Monitoring and Data Analysis: The system was monitored for several months to collect real-time data and 
assess the performance of AI algorithms in detecting health issues. 
 
A case study was done on a participating farm to assess the efficacy of the CogniHerd  technology. The 
execution encompassed:  
 
Implementation of IoT Devices: A variety of biometric sensors, GPS trackers, and environmental sensors were 
mounted on the cattle.  
 
AI Model Training: Historical data was employed to train the predictive models. The models were 
progressively enhanced using feedback and supplementary data gathered throughout the monitoring period.  
 
Surveillance and Data Evaluation: The system underwent monitoring for several months to gather real-time 
data and evaluate the efficacy of AI algorithms in identifying health concerns. 

3.6 Limitations 

During the implementation of the CogniHerd  system, certain constraints were recognised:  
 
Concerns Regarding Data Privacy: The accumulation and retention of sensitive data have elicited 
apprehensions about data privacy and security. Comprehensive encryption and access controls were 
established to alleviate these issues.  
 
Infrastructure Specifications: The system’s effectiveness depended on reliable internet connectivity and the 
presence of essential infrastructure, which might be problematic in remote regions.  
 
Challenges of Integration: The interoperability of various IoT devices and platforms presents hurdles, 
highlighting the need for standardisation in future advancements.  
 
This section details the resources and procedures that establish a thorough foundation for designing and 
implementing the CogniHerd  system for monitoring livestock health. The system seeks to optimise animal 
health monitoring, increase production, and promote sustainable agricultural practices through the use of IoT 
devices and sophisticated AI algorithms. Future endeavours will concentrate on rectifying the highlighted 
shortcomings and augmenting the system’s capabilities to facilitate wider applications in animal health 
monitoring. 

https://worldbiologica.com/
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Fig. 5 Material & Methodology of CogniHerd System 

4. Existing System of Livestock Health Management 

Historically, dairy farms depended on manual observation methods to identify health-related problems in 
cattle, necessitating constant or daily surveillance by farmworkers. These conventional approaches were 
arduous and susceptible to inaccuracies, especially when symptoms were not overtly evident. Agriculturists 
frequently required visual evaluations of sickness indicators, such alterations in behaviour, food habits, or 
physical condition; nevertheless, these methods were not consistently dependable and could result in 
erroneous judgements. Misdiagnosis or delayed disease detection presents considerable dangers to cattle 
health, frequently resulting in exacerbated conditions or heightened mortality (Aleluia, Vitor et al., 2022).  

Furthermore, conventional methods were insufficient in detecting early-stage diseases that do not exhibit 
obvious exterior symptoms, resulting in a reactive rather than a preventive strategy in animal healthcare. The 
lack of early detection methods resulted in frequent treatment delays, adversely affecting overall animal 
welfare and productivity (Pengguang, He. et al., 2022). Moreover, ongoing manual oversight required 
substantial labour, particularly for extensive herds, thus leading to economic inefficiencies for farmers.  

In response to these issues, researchers have suggested automated solutions that incorporate AI and IoT 
technology to enhance cattle health monitoring. These systems incessantly monitor essential health metrics, 
including temperature, mobility, and heart rate, utilising wearable sensors and IoT devices. AI algorithms 
subsequently examine the gathered data to deliver real-time insights and facilitate the early identification of 
any health concerns, enabling prompt action and treatment (Shajari S. et al., 2023). This method decreases 
labour demands while simultaneously enhancing accuracy and expediting illness identification, hence greatly 
improving animal health and operating efficiency on farms (Dayoub, Moammar et al., 2024).  

The necessity for automated health monitoring systems is clear, as they provide more accurate and rapid 
disease diagnosis than conventional methods, facilitating early intervention and diminishing the total risk to 
cattle health (Neethirajan, Suresh. Et al., 2017). 

https://worldbiologica.com/
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Fig. 6 Flow Diagram of Existing System Of Livestock Health Monitoring 

 

 
Fig. 7 Schematic Representation of Existing System For Livestock Health Monitoring 

5. Gaps in Existing System of Livestock Health Management 

The current animal health monitoring systems include significant shortcomings that impede their efficacy, 
especially as farms expand and new health issues arise. 

5.1 Manual Monitoring is Time-Consuming and Prone to Errors 

Conventional health monitoring techniques predominantly depend on visual assessment and human 
evaluation. These procedures are both laborious and susceptible to inaccuracies, particularly in identifying 
nuanced alterations in animal behaviour or health condition. As agricultural operations expand, it becomes 
progressively challenging for employees to consistently observe individual animals, frequently resulting in the 
oversight of early-stage disease symptoms (Linas, Saikevičius, et al., 2024). The assessment of animal health is 
significantly compromised by human error, diminishing the efficacy of early illness detection methods.  

https://worldbiologica.com/
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5.2 Limited Data Analysis Misses Crucial Indicators 

Manual systems generally lack comprehensive data analytics, resulting in the potential oversight of crucial 
markers such minor fluctuations in temperature, heart rate, or movement patterns that may indicate the onset 
of illness. In the absence of continuous data collection and analysis, farmers frequently depend on observable 
symptoms that typically manifest only after a disease has advanced considerably (K. Darvesh et al., 2023). This 
constraint hinders timely responses that could mitigate animal suffering and economic losses. 

5.3 Subjectivity Leads to Variations in Diagnosis 

Health assessments reliant on human observation are intrinsically subjective, resulting in diagnostic 
variations among various farmworkers or even across different farms. Two personnel may evaluate the same 
animal differently based on their experience and subjective judgement, resulting in inconsistencies in 
treatment decisions (Vourc’h, G. et al., 2006). This variability contributes to the ambiguity of animal health 
status and undermines the precision of disease management measures. 

5.4 Challenges in Real-Time Monitoring and Scalability 

Conventional livestock health monitoring systems face challenges in real-time, large-scale surveillance, 
particularly on commercial farms housing hundreds or thousands of animals. Daily monitoring of such a 
substantial number of animals is impracticable using manual methods. Moreover, these systems lack real-time 
updates, hindering rapid responses to emergent health issues (Papakonstantinou, Georgios I. et al., 2024). The 
gathering and analysis of real-time data are essential for swift measures that can avert disease transmission. 

5.5 Lack of Predictive Analytics and Data Integration 

Predictive analytics, essential for preempting health risks, is lacking in the majority of conventional 
monitoring techniques. These systems predominantly depend on reactive measures, responding solely to 
observable indications of sickness. Moreover, they lack data integration skills, resulting in the failure to 
amalgamate information regarding an animal’s health history, environmental circumstances, and other 
pertinent data points for educated forecasts or judgements (Papst, Franz et al., 2019). In the absence of 
integrated data, farmers possess disjointed information that constrains their capacity to proactively oversee 
animal health. 

5.6 Higher Costs and Inefficiencies in Traditional Methods 

Manual monitoring involves considerable labour and frequently results in inefficiencies, including postponed 
diagnosis and treatment. The labour expenses linked to ongoing manual inspections can be substantial, 
particularly in extensive agricultural enterprises. Furthermore, the imprecision of these procedures frequently 
leads to superfluous veterinary interventions or the oversight of early-stage disorders, hence escalating 
overall expenses (Aleluia, Vitor. et al., 2022). This inefficiency constitutes a significant obstacle to enhancing 
agricultural productivity and preserving animal health.  

The deficiencies of current systems underscore the pressing necessity for the implementation of more 
sophisticated, automated health monitoring technologies, such as artificial intelligence and the Internet of 
Things, which can address numerous difficulties by delivering real-time, data-driven insights and diminishing 
dependence on manual labour. 
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Fig. 8 Inefficiencies of Existing System For Livestock Health Monitoring 

6. Proposed System of Livestock Health Management 

Recently, the utilisation of machine learning (ML) methodologies has markedly increased in veterinary 
medicine, especially in forecasting disease occurrences in cattle (Guitian, J. et al., 2023). This suggested 
method intends to utilise powerful machine learning techniques to accurately detect several diseases common 
in cattle within disease-prone communities.  

The primary aim of this system is to employ past cow health data gathered from real-world situations to 
develop and evaluate predictive models. Utilising modified estimating methods, the system can deliver 
actionable insights into cow health management, facilitating prompt interventions and perhaps mitigating 
disease outbreaks (Swain, Satyaprakash. 2024).  

A major obstacle in predictive modelling is the problem of inadequate data, which can result from 
variables such as inconsistent record-keeping or unreported health occurrences (Gorelick, MH., 2006). The 
suggested system employs a latent factor methodology to recreate absent data points, hence enhancing the 
dataset’s comprehensiveness for analysis. This technique facilitates the estimation of absent values by 
leveraging the associations present in the available data, hence augmenting the robustness of prediction 
models (R. Thiyagarajan et al., 2024).  

Machine learning, a branch of artificial intelligence, enables the prediction of future events by analysing 
patterns in historical data. In the realm of cattle health, although machine learning methods are acknowledged 
for their effectiveness in disease prediction and risk factor identification, there is a significant lack of literature 
that comprehensively examines these techniques in veterinary science (Swain, Satyaprakashet. Et al., 2024).  

The amalgamation of many machine learning methodologies facilitates the examination of varied data 
kinds, including visual manifestations of diseases, hence enhancing predicted precision (A. A. Chaudhry et al., 
2020). The integration of various algorithms seeks to establish a comprehensive method for predicting cow 
health, resulting in enhanced accuracy and dependability in illness forecasting (García, Rodrigo. Et al., 2020).  

We firmly assert that the implementation of this system will enable stakeholders in the agriculture sector 
to gain superior disease prediction capabilities, resulting in greater herd management and improved animal 
welfare. 

7. Objectives 

The main goal of this project is to improve cattle management by utilising artificial intelligence (AI) 
technologies. The explicit aims are as follows: 
 

1. Early Detection of Health Issues: The system seeks to enable the swift detection of possible health 
issues in animals. The AI-driven methodology, through the analysis of diverse data sources, can 
identify atypical patterns or anomalies that may signify the emergence of diseases, facilitating timely 
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interventions and mitigating the danger of significant outbreaks (Bohr, A. et al., 2020; AlZubi Ali 
Ahmad, 2023). 

 
Fig. 9 Flow Diagram Represents The Proposed System (CogniHerd ) For Livestock Health Monitoring 

 

 
Fig. 10 Block Diagram Showing the Flow of Information through Various Layered System in CogniHerd: A Proposed 

Livestock Health Monitoring System 

 
2. Continuous Real-Time Monitoring of Vital Parameters: The manuscript will integrate sensors and 

data acquisition instruments to perpetually assess critical health metrics, including temperature, heart 
rate, and activity levels. This real-time data stream offers prompt insights into the animals’ welfare, 
facilitating rapid responses to any alterations in their health condition (Neethirajan, S. 2024; 
Abdulmalek, S. et al., 2022). The primary diseases addressed in our project case study, covered in the 
following parts, include faecal identification, voice recognition, bovine mastitis, and temperature 
monitoring utilising AI and IoT technologies. 
 

3. Predictive Analytics for Risk Assessment: Utilising predictive analytics, the system will evaluate the 
probability of health complications based on historical and real-time data. This capability facilitates 
the identification of risk factors linked to certain diseases, assisting in the formulation of proactive 
management measures that can alleviate prospective health problems (Alotaibi, Eid. 2023).  

 
4. Data-Driven Decision Support: The use of AI will facilitate data-driven decision-making processes in 

cattle management. Stakeholders can utilise insights obtained from the analysed data to make 
informed decisions about breeding, feeding, and general herd management, hence enhancing 
productivity and health outcomes (Tantalaki, Nicole a. et al., 2019; Awoke, Melak. Et al., 2024).  
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5. Automation of Monitoring Tasks: The research aims to automate conventional, labour-intensive 

monitoring duties. Employing AI technologies, including machine learning and computer vision, 
enables the system to optimise data gathering and analysis, thereby reallocating resources for more 
strategic endeavours in cattle management (AlZubi Ali Ahmad, Al-Zu’bi Maha. 2023). 

 

 
Fig. 11 Key Objectives Of Proposed Livestock Health Monitoring Using Artificial Intelligence (AI) And Internet Of Things 

(IoT) (CogniHerd  System) 

8. Fundamentals of AI AND IoT in Livestock Health 

8.1 Artificial Intelligence in Agriculture 

Artificial Intelligence (AI) has swiftly emerged as a revolutionary influence in agriculture, particularly in the 
area of animal health monitoring. Artificial intelligence utilises sophisticated computational models, including 
machine learning and deep learning, to discern patterns in extensive datasets, rendering it especially 
beneficial for the analysis of intricate biological and environmental factors in agriculture. A key application of 
AI in livestock health is pattern recognition. By examining previous data regarding an animal’s locomotion, 
dietary behaviours, or physiological indicators, AI systems can detect anomalies from typical patterns that 
may indicate the first stages of illness (Das, Parinita & Saha, Kaushik. 2022). 

Furthermore, AI-driven predictive analytics enables farmers to anticipate potential health problems prior 
to the manifestation of visible symptoms. Predictive models can evaluate variables such as meteorological 
conditions, feed intake, and behavioural alterations to anticipate disease outbreaks or nutritional deficits in 
livestock (Delfani, P., Thuraga, V., Banerjee, B. et al. 2024). This skill allows farmers to implement preventive 
actions, thereby diminishing the economic and health repercussions of diseases. AI algorithms are proficient at 
identifying nuances that may be undetectable to the human eye, such as minor alterations in an animal’s 
posture or stride, which can signify injury or disease (Hashem, Tareq & Joudeh, Jamal & Ahmad Zamil, Ahmad. 
2024).  

Machine learning models can be perpetually taught and enhanced as new data is acquired, hence 
enhancing their accuracy over time. This iterative learning technique is very beneficial for monitoring the 
health of individual animals in extensive herds. AI technologies personalise health assessments to guarantee 
that each animal receives care tailored to its specific biological and environmental circumstances. This is 
essential for enhancing livestock productivity and safeguarding wellbeing. Zhang, Li, et al. (2023). 

8.2 Internet of Things (IoT) in Farming 

The Internet of Things (IoT) is essential in contemporary animal health management through facilitating real-
time data acquisition and remote surveillance. The Internet of Things (IoT) denotes a network of networked 
devices, such as sensors, cameras, and wearables, that continuously collect and transmit data. In cattle 
husbandry, IoT devices are commonly affixed to animals as wearables, such biometric collars, ear tags, or leg 
bands. These devices can assess many health metrics, including heart rate, temperature, activity levels, and 
reproductive status (Al-Kahtani MS, Khan F, Taekeun W. 2022).  

The data gathered by these IoT devices is transmitted to centralised systems for real-time analysis. This 
allows farmers to oversee the well-being of their cattle remotely, facilitating prompt responses upon the 
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detection of anomalies. IoT sensors can identify an increase in body temperature that may signify fever or 
observe irregularities in an animal’s movement that could indicate damage or distress. The Internet of Things 
(IoT) enhances continuous monitoring, so diminishing the likelihood of overlooked health concerns and 
lessening dependence on manual evaluations (Liang, Chen & Shah, Tufail. 2023).  

The Internet of Things (IoT) technology transcends the monitoring of individual animal health. 
Environmental sensors deployed across the farm can monitor temperature, humidity, air quality, and feed 
levels, all of which influence animal health. This comprehensive strategy allows farmers to enhance animal 
welfare and agricultural productivity by modifying environmental controls to sustain ideal living 
circumstances (Suresh, Neethirajan. 2020). 

8.3 Synergy of AI and IoT 

The integration of AI and IoT presents exceptional opportunities for transforming animal health management. 
Although IoT devices deliver a constant flow of real-time data, AI algorithms are crucial for interpreting that 
data. This collaboration facilitates instantaneous decision-making and anticipatory diagnosis. AI can analyse 
IoT-generated data to identify trends that signal disease or stress prior to their escalation (Aunindita, Rudaba. 
Et al., 2022). This allows farmers to use proactive measures, diminishing the necessity for reactive 
interventions and decreasing the overall healthcare expenses.  

Furthermore, AI may independently evaluate data gathered from IoT devices and provide 
recommendations or implement solutions. For instance, if IoT sensors identify early signals of distress in an 
animal, AI algorithms can autonomously modify the animal’s environment—such as enhancing ventilation or 
altering feed—without necessitating human intervention. This autonomous intervention capability is 
especially beneficial for extensive operations, when individualised attention to each animal is difficult (Bao, 
Jun & Xie, Qiuju. 2022).  

The amalgamation of AI and IoT not only augments animal health results but also optimises overall farm 
efficiency by decreasing labour expenses, reducing antibiotic usage through preventive measures, and 
assuring adherence to regulatory norms. The ongoing evolution of these technologies is expected to enhance 
the sustainability, scalability, and animal welfare of farming practices (Karthik, Darvesh. Et al., 2021). 
 

Table 1 Overview of AI, IoT, and Their Synergistic Applications in Modern Livestock Health Management and 
Farming Practices 

Category Key Applications  Technology Used Outcomes/Benefits  References 

Artificial 
Intelligence in 
Agriculture 

Detects anomalies in animal 
behavior and physiological 
indicators through pattern 
recognition. 
 

Predicts potential health 
problems using predictive 
analytics. 
 

Identifies subtle signs of 
illness or injury undetectable 
to the human eye. 

Machine learning 
and deep learning 
models. 
 

Predictive analytics 
leveraging 
environmental and 
behavioral data. 

Early disease 
detection and 
prevention. 
 

Personalised health 
assessments for 
individual animals. 
 

Improved livestock 
productivity and 
wellbeing. 

Das, Parinita & Saha, 
Kaushik, 2022; 
Delfani, P., Thuraga, 
V., Banerjee, B. et al., 
2024; Hashem, Tareq 
& Joudeh, Jamal & 
Ahmad Zamil, 
Ahmad, 2024; Zhang, 
Li, et al., 2023 

Internet of Things 
(IoT) in Farming 

Real-time monitoring of 
health metrics (heart rate, 
temperature, activity, etc.). 
 

Remote surveillance and data 
acquisition. 
 

Monitoring environmental 
factors like temperature, 
humidity, and air quality. 

IoT wearables 
(biometric collars, 
ear tags, leg bands). 
 

Environmental 
sensors for farm-
wide monitoring. 

Enables prompt 
responses to 
anomalies. 
 

Reduces manual 
evaluations and 
overlooked health 
issues. 
 

Enhances animal 
welfare through 
optimized living 
conditions. 

Al-Kahtani MS, Khan 
F, Taekeun W., 2022; 
Liang, Chen & Shah, 
Tufail, 2023; Suresh, 
Neethirajan, 2020 

Synergy of AI and 
IoT 

Real-time interpretation of 
IoT-generated data using AI. 
 

Proactive measures for 
disease and stress prevention. 
 

Autonomous environmental 

Integration of IoT 
data streams with 
AI algorithms. 
 

Autonomous 
systems for 

Reduced healthcare 
expenses and labour 
costs. 
 

Minimised antibiotic 
usage through 

Aunindita, Rudaba et 
al., 2022; Bao, Jun & 
Xie, Qiuju, 2022; 
Karthik, Darvesh et 
al., 2021 
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adjustments based on sensor 
data. 

intervention and 
recommendations. 

preventive measures. 
 

Enhanced 
sustainability and 
scalability in farming 
practices. 

 

 
Fig. 12 Integration of Artificial Intelligence (AI) & Internet of Things (IoT) In CogniHerd  System 

9. Components of the Cogniherd System 

9.1 Smart Sensors and Wearable 

The foundation of the CogniHerd  system is comprised of intelligent sensors and wearable devices that gather 
real-time data from animals. These IoT-enabled devices provide several features for ongoing health 
monitoring. Commonly used sensors encompass biometric sensors, GPS trackers, and environmental sensors, 
each fulfilling a distinct role in preserving animal health and welfare (Suresh Neethirajan, et al., 2017).  

Biometric sensors are commonly affixed to animals via collars, ear tags, or leg bands. These sensors track 
essential physiological parameters including heart rate, body temperature, and respiratory rate. Ongoing 
surveillance of these markers facilitates the early identification of health issues, including fever, stress, or 
infection (Bhisham Sharma & Deepika Koundal, 2018). An increased body temperature may suggest a viral 
infection, whereas irregular heart rhythms could indicate discomfort or metabolic disorders. Biometric 
sensors monitor reproductive health by tracking hormonal variations and forecasting optimal breeding 
periods, hence enhancing fertility rates and herd productivity (Awasthi, Amruta et al., 2020). 

GPS trackers provide real-time location monitoring, which is especially advantageous for expansive 
agricultural enterprises as cattle traverse vast territories. These devices can identify variations from typical 
behaviour by tracking animal movement patterns, which may signify injury, illness, or theft. A cow that 
remains immobile for extended durations may sustain injuries or become ill. The integration of GPS data with 
additional biometric information offers a comprehensive perspective on an animal’s physical health and 
activity levels (Schieltz, J.M. et al., 2017; Gaur, Mahesh. Et al., 2013).  

Environmental sensors installed across the farm assess parameters like temperature, humidity, air 
quality, and noise levels. These characteristics are essential for sustaining good living circumstances for 
animals. Elevated temperatures or subpar air quality can aggravate respiratory conditions or induce heat 
stress, both of which adversely impact animal health. The system may continuously gather environmental data 
to notify farmers of potential problems and provide corrective measures, such as altering ventilation or 
revising feeding schedules (Lee M, & Seo S. 2021).  

9.2 AI Algorithms and Models 

The AI element of the CogniHerd  system is tasked with analysing the extensive data produced by IoT devices. 
AI algorithms utilise machine learning, deep learning, and reinforcement learning methodologies to identify 
patterns, forecast health outcomes, and propose remedies (Fuentes, S. et al., 2022).  

A key application of AI within the system is anomaly detection. Through the ongoing comparison of real-
time data with historical baselines, AI models can identify anomalies that may signify early indicators of illness 
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or discomfort. A gradual yet persistent decline in an animal’s activity, accompanied by an increase in body 
temperature, may indicate the development of an infection (Rajawat, Anand. Et al., 2022). This skill facilitates 
preventive measures, hence diminishing the necessity for expensive treatments.  

Deep learning models are utilised to analyse intricate datasets, such as photos captured by cameras or 
video feeds employed to observe animal behaviour. These models can identify nuanced alterations in posture, 
movement, or feeding behaviour that may signify injury or disease. With increased data exposure, deep 
learning models enhance their accuracy, hence improving the system’s efficiency in recognising health 
concerns (Cheng, Man. Et al., 2022).  

Reinforcement learning is an essential AI methodology employed in CogniHerd . It entails instructing AI 
systems to make decisions by incentivising favourable outcomes and sanctioning unfavourable ones. 
Reinforcement learning algorithms can optimise feeding schedules, ambient conditions, and treatment plans 
in livestock management by utilising continuous input from sensor data (Xinyu, Tian. Et al., 2024). 

9.3 Edge and Cloud Computing 

The CogniHerd  system’s innovative feature is its utilisation of edge and cloud computing to handle and 
manage the vast quantities of data produced by IoT devices.  

Edge computing pertains to the local processing of data at or near the point of data collection (e.g., on the 
farm). This method reduces latency, facilitating real-time analysis and decision-making. If a biometric sensor 
identifies a substantial increase in an animal’s temperature, the system can promptly alert the farmer or 
initiate an automated response, such as modifying the ventilation system to alleviate heat stress. Edge 
computing facilitates prompt decision-making, which is crucial in extensive operations where delays may lead 
to overlooked health concerns (Ricardo S. Alonso et al., 2020).  

Conversely, cloud computing is employed for comprehensive data processing and prolonged storage. Data 
gathered from IoT devices is transmitted to cloud platforms, where sophisticated AI algorithms analyse 
extensive datasets to identify trends and create prediction models. Historical health data from several animals 
can be analysed to forecast disease outbreaks or determine optimal breeding periods. Cloud computing allows 
farmers to remotely access their livestock data from any device, offering flexibility and maintaining the 
constant availability of essential information (Harini, Shree Bhaskaran. Et al., 2024). 

CogniHerd  integrates the rapidity and efficacy of edge computing with the scalability of cloud platforms, 
providing real-time insights and facilitating long-term strategic planning, so optimising livestock health 
management and augmenting farm output. 

 

 
Fig. 13 CogniHerd Wearable Devices 
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10. Breif Overview of Working Principle of IoT in Livestock Health Monitoring 

The Internet of Things (IoT) denotes a network of interlinked devices that exchange and transmit data via the 
internet. This interconnection allows devices to gather, share, and respond to information autonomously, 
rendering it a potent instrument for applications like cattle health monitoring (Isaac, Justin. 2021). The 
operational principle of IoT can be comprehended through several fundamental layers: 
 

1. Perception Layer: This is the fundamental layer of the IoT architecture, where sensors and actuators 
collect data from the physical environment. In livestock health monitoring, numerous sensors, such as 
temperature, heart rate, and movement sensors, are utilised to continuously assess the health and 
behaviour of the animals. These sensors gather essential parameters that offer insights into the 
animals’ welfare, facilitating the early identification of potential health concerns (Krishnan, Saravanan 
& S., Saraniya. 2017). 
 

2. Network Layer: This layer enables communication between devices and centralised servers through 
various protocols, including Wi-Fi, Bluetooth, and cellular networks. Data gathered by sensors in the 
perception layer is relayed to a central system for processing and analysis. The network layer 
guarantees secure and efficient data transfer, facilitating real-time monitoring and prompt responses 
to identified anomalies (Bello, Oladayo, et al., 2016).  

 
3. Application Layer: The application layer processes and analyses data gathered from sensors, 

frequently employing cloud-based services and data analytics platforms. This layer utilises advanced 
analytical approaches in cattle health monitoring to extract meaningful insights from data, including 
trend identification, risk assessment, and data-driven management decision-making. Implementing 
machine learning algorithms at this level can improve predictive analytics, facilitating more precise 
evaluations of animal health (Gordon, Miriam et al., 2024).  

 
4. Edge Computing Layer (Optional): This supplementary layer conducts data processing nearer to the 

source, therefore substantially diminishing latency and bandwidth consumption. By processing data at 
the edge instead of transmitting all information to a centralised server, the system may deliver real-
time insights and prompt actions depending on the data gathered from the sensors. This is especially 
advantageous in situations when prompt reactions are essential, such as in the management of acute 
health concerns in livestock (Tri Nguyen et al., 2024).  

 
The IoT framework boosts livestock health monitoring systems by utilising these layers, allowing for 
continuous, real-time surveillance of animal health and fostering proactive management tactics. 
 

 
Fig. 14 Architecture in Internet of Things (IoT) 
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11. Key Applications of AI and IoT in Livestock Health Monitoring 

11.1 Disease Detection and Early Warning Systems 

A fundamental application of AI and IoT in cattle health is disease detection. Conventional techniques 
frequently depend on visual assessments, which may be imprecise or tardy, leading to delayed identification of 
conditions such as mastitis, respiratory ailments, or gastrointestinal disorders. AI-IoT systems provide a 
solution by persistently monitoring health metrics, including body temperature, heart rate, and mobility, 
detecting minor alterations that may precede observable symptoms (Unold, O. et al., 2020).  

Wearable IoT devices, such as biometric collars or ear tags, gather data in real-time and transmit it to AI 
models intended for anomaly detection. These algorithms juxtapose current data with established baselines to 
detect preliminary indicators of sickness. A rise in temperature coupled with decreased mobility may signify 
the development of mastitis in dairy cattle. Upon detection, the system can notify farmers using cellphones or 
farm management platforms, facilitating prompt intervention (Majumder, S. et al., 2017). This early warning 
system mitigates disease severity, reduces treatment expenses, and curtails the transmission of infectious 
diseases within the herd (AlZubi, Ali Ahmad. 2023).  
In sophisticated configurations, AI systems can forecast disease outbreaks by analysing environmental 
variables such as temperature and humidity, which affect the likelihood of respiratory diseases. By connecting 
sensor data with meteorological patterns, these technologies assist farmers in implementing preventive 
actions such as modifying ventilation systems or altering feeding methods to mitigate disease risk (Hammad, 
Shahab et al., 2024). 

11.2 Behavioral and Environmental Monitoring 

Artificial Intelligence and Internet of Things technologies facilitate behavioural and environmental monitoring, 
crucial for ensuring the overall welfare of livestock. Behavioural alterations—such as diminished mobility, 
modified dietary habits, or extended periods of rest—may signify health concerns. IoT devices, like motion 
sensors and GPS trackers, gather data about animal behaviour and movement patterns. AI algorithms 
subsequently examine this data to identify anomalies in typical behaviour. For instance, if a cow that usually 
grazes energetically exhibits less mobility, the system may identify this as a potential health issue (Halachmi, 
Ilan. Et al., 2019).  

Behavioural monitoring is crucial for detecting problems that may lack immediate physical 
manifestations, such as lameness or stress. AI models can identify patterns of reduced mobility or abnormal 
gait, which frequently serve as preliminary signs of lameness. Timely identification facilitates expedited 
treatment, enhancing animal comfort and mitigating economic costs linked to diminished output (Santosh 
Pandey et al., 2021).  

Alongside behavioural monitoring, environmental sensors measure variables such as temperature, 
humidity, and air quality, which can profoundly affect livestock health. In chicken farms, elevated humidity 
levels heighten the risk of respiratory diseases. AI models can offer appropriate modifications to ventilation 
systems or feeding schedules by integrating environmental data with behavioural data, hence preventing 
stress or disease induced by environmental circumstances (Pereira, Wariston, et al., 2020). 

11.3 Reproductive Health and Breeding Optimization 

AI and IoT are significantly contributing to the management of reproductive health. Monitoring oestrus cycles 
is essential for optimising breeding periods; however, conventional methods of oestrus identification, like as 
eye inspection, are labour-intensive and frequently imprecise. AI-IoT systems provide automatic oestrus 
identification by continuously monitoring physiological and behavioural alterations, such heightened activity 
or variations in body temperature (Cho, Youngjoon & Kim, Jongwon. 2023).  

IoT devices such as leg bands or collars can detect movement patterns that generally intensify during 
oestrus, while biometric sensors assess hormonal fluctuations. AI models use this data to precisely forecast 
the commencement of oestrus, enabling farmers to time breeding optimally, thus enhancing conception rates 
and minimising calving intervals (Lee, Meonghun. 2018). Furthermore, AI-driven predictive algorithms can 
ascertain optimal breeding couples utilising genetic data, hence enhancing herd productivity and progeny 
quality. 

11.4 Nutritional and Wellness Management 

Optimal nutrition is crucial for sustaining cattle health and productivity, with AI-IoT systems significantly 
contributing to nutritional and wellness management. IoT-enabled feeding systems oversee feed consumption, 
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while weight sensors monitor variations in body mass. Artificial intelligence programs evaluate this data to 
guarantee that animals are ingesting adequate feed quantities and achieving optimal weight gain rates (Tak, 
Pooja. & Kumawat, Ajay. 2024). 

For instance, if an animal’s feed consumption abruptly declines or it has insufficient weight gain, the 
system might notify the farmer of a possible health concern, such as digestive issues or starvation. These 
systems can recommend modifications to feeding schedules or rations tailored to the individual needs of each 
animal, so optimising growth and ensuring nutritional requirements are fulfilled (Sonea, Cosmin. 2023).  

The integration of AI and IoT facilitates the creation of personalised wellness plans, utilising each animal’s 
health data to customise interventions. Sensors that monitor vital signs, such as pulse rate and body 
temperature, can identify early indicators of stress or disease, prompting AI systems to suggest modifications 
in food or medication. This tailored method enhances overall animal wellbeing and diminishes the necessity 
for antibiotics or alternative treatments (Thilakarathne, Navod. Et al., 2021). 
 

Table 2 Applications of AI and IoT in Livestock Health Monitoring and Management with Associated Benefits 
Category Key Applications Technology Used Outcomes/Benefits Reference 

Disease Detection 
and Early Warning 
Systems 

Continuous 
monitoring of health 
metrics like 
temperature, heart 
rate, and mobility. 
 

Detects early signs of 
diseases (e.g., mastitis, 
respiratory ailments). 

Wearable IoT 
devices 
(biometric collars, 
ear tags). 
 

AI-based anomaly 
detection 
algorithms. 

Enables early disease 
detection and timely 
intervention. 
 

Reduces treatment 
costs and disease 
severity. 
 

Prevents disease 
spread within the 
herd. 

Unold, O. et al., 2020; 
Majumder, S. et al., 
2017; AlZubi, Ali 
Ahmad, 2023; Hammad, 
Shahab et al., 2024 

Behavioral and 
Environmental 
Monitoring 

Tracks changes in 
movement, feeding, 
and resting behavior 
to detect health 
concerns. 
 

Monitors 
environmental factors 
like temperature, 
humidity, and air 
quality. 

IoT devices 
(motion sensors, 
GPS trackers, 
environmental 
sensors). 
 

AI algorithms 
analyze 
behavioral and 
environmental 
data. 

Detects stress or 
health issues (e.g., 
lameness, respiratory 
diseases). 
 

Improves animal 
welfare and comfort. 

Halachmi, Ilan et al., 
2019; Santosh Pandey 
et al., 2021; Pereira, 
Wariston, et al., 2020 

Reproductive 
Health and 
Breeding 
Optimization 

Automates oestrus 
detection via activity 
and temperature 
monitoring. 
 

Identifies optimal 
breeding pairs using 
genetic data. 

IoT devices (leg 
bands, biometric 
collars). 
 

AI predictive 
algorithms for 
genetic analysis 
and oestrus 
detection. 

Increases conception 
rates and reduces 
calving intervals. 
 

Enhances herd 
productivity and 
progeny quality. 

Cho, Youngjoon & Kim, 
Jongwon, 2023; Lee, 
Meonghun, 2018 

Nutritional and 
Wellness 
Management 

Oversees feed intake 
and weight changes. 
 

Identifies health 
concerns based on 
nutritional patterns. 
 

Creates personalized 
wellness plans. 

IoT-enabled 
feeding systems 
and weight 
sensors. 
 

AI models analyze 
vital signs and 
feeding data. 

Ensures optimal 
nutrition and growth. 
 

Detects early signs of 
digestive issues or 
malnutrition. 

Tak, Pooja & Kumawat, 
Ajay, 2024; Sonea, 
Cosmin, 2023; 
Thilakarathne, Navod et 
al., 2021 
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Fig. 15 Applications Of AI & Iot For Livestock Health Monitoring (CogniHerd  System) 

12. Case Studies and Real-World Implementations 

12.1 Successful Case Studies 

1. CowMonitor System, Poland: This IoT-based system, implemented on a dairy farm, utilised sensor 
data to monitor the health of dairy cows, specifically targeting the detection of oestrus and mastitis. 
Over a six-month interval, the method identified 90% of mastitis cases prior to the manifestation of 
physical signs through the analysis of rumination patterns. This facilitated real-time oversight of 
therapeutic advancement, leading to prompt veterinarian interventions. Unold, O. et al. (2020). 

 
2. Dairy Farm in Mehsana, India: A novel cattle health monitoring system named My Herd was created 

utilising Internet of Things (IoT), Thing Speak, and a smartphone application. My Herd consistently 
assesses the health status of cattle by gathering and analysing physiological metrics, including body 
temperature, heart rate, and activity level. The data is subsequently communicated to the ThingSpeak 
cloud platform via IoT nodes, where it is analysed utilising MATLAB algorithms. A mobile application 
has been developed to offer farmers real-time monitoring and warnings regarding any abnormalities 
in cattle health. The suggested method was evaluated on a cohort of cattle, revealing its capability to 
reliably identify and diagnose multiple health problems. My Herd offers farmers a cost-effective and 
efficient option for monitoring cattle health, thereby enhancing production and profitability in the 
livestock sector. Bhatla, Ayushi et al., 2023. 

 
3. Smart Cattle, Mumbai, India: Our findings indicate that general health monitoring may serve as a 

viable solution to the body temperature problem. The Mlx90614 sensor yields erroneous body 
temperature measurements due to the thick skin of cattle. After completing an experiment, we 
determined that we could obtain precise measurements of upper skin temperature; so, we choose to 
convert body temperature to skin temperature to assess heat stress in cattle. Heat stress results from a 
confluence of environmental elements, including relative humidity, sun radiation, air movement, and 
precipitation. Combinations of ambient temperature and relative humidity that result in mild heat 
stress (THI 72 to 79), moderate heat stress (THI 79 to 89), and severe heat stress (THI > 89). Our 
findings indicate that pulse rate (BPM) and activity status can be utilised to assess sleep status. 
(Darvesh, Karthik, et al., 2023). 

 
4. Animal Production and Reproduction, Brazil: The utilization of sensors and other data collection 

techniques, such as CV, serves as a viable alternative to obtain quantitative information from animals 
while reducing data collection costs, as they enable data acquisition over an extended period, offer the 
potential for automating processes on the farm and the possibility of making data-based informed 
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decisions. In the reviews addressed in our work, it is clear that PLF methods are currently under 
development to assess various challenges existing in the animal production and reproduction fields, 
and there is a future trend towards an expansion of the usage of such techniques. However, its 
adoption by end-users still is not at its full potential. In order to address this issue and optimize the 
practical implementation of new PLF projects, this work targeted important aspects to be taken into 
consideration during the different steps involved in the creation of a full cycle project: data collection, 
transferring, storage, analysis and delivery of results. (Curti, P. F. et al., 2023). 

 
5. Lumpy Skin Disease, Pakistan: The suggested IoT-enabled cow health monitoring system, utilising a 

collar equipped with intelligent sensors, exhibited notable enhancements in the early identification of 
Lumpy Skin Disease (LSD) through the continuous and remote surveillance of key data, including body 
temperature, heart rate, and tri-axial movements. This sophisticated system offers a cost-efficient and 
complete solution for real-time health monitoring and management of cattle, featuring an open-source 
cloud computing platform and distinctive mobile application support. The incorporation of 
contemporary technology, including cloud computing and the Internet of Things (IoT), ensures 
enhanced precision and timely notifications, hence augmenting the ability to detect cattle health 
irregularities promptly and facilitating swift remote intervention. This innovative method is 
distinguished by its capacity to identify LSD symptoms and its significant role in enhancing livestock 
health management and productivity. (Shahab, H. et al., 2024). 

 
These case studies underscore the capability of AI-IoT systems in tackling significant difficulties in cattle 
management, including disease identification and reproductive enhancement. The findings indicate concrete 
advantages, such as enhanced animal health, heightened output, and cost reductions, rendering AI-IoT 
solutions appealing for farms of all scales. 

12.2 Challenges in Deployment 

The advantages of AI and IoT in animal health management are evident; nevertheless, the implementation of 
these systems presents problems. Technical constraints pose a considerable obstacle, especially in rural 
regions where several farms are situated. Dependable internet access is essential for IoT devices to relay data 
in real-time, and inadequate connectivity might impede system performance. The substantial expense of 
modern AI and IoT technology can be a barrier for small-scale farmers, complicating wider adoption (Elijah, 
Olakunle. Et al., 2018). 

 
Table 3 Examples of IoT-Based Livestock Health Monitoring Systems 

System/Location Key Features Applications Outcomes/Benefits References 

CowMonitor 
System, Poland 

Sensor-based IoT 
system to monitor 
rumination patterns. 

Detects oestrus 
and mastitis in 
dairy cows. 

Identified 90% of mastitis 
cases before visible symptoms; 
enabled real-time therapeutic 
monitoring. 

Unold, O. et al., 
2020 

My Herd, 
Mehsana, India 

IoT nodes with 
physiological sensors, 
ThingSpeak cloud 
platform, MATLAB 
algorithms, and mobile 
app. 

Monitors cattle 
health (body 
temperature, heart 
rate). 

Reliable health diagnostics; 
cost-effective solution 
improving production and 
profitability. 

Bhatla, Ayushi et 
al., 2023 

Smart Cattle, 
Mumbai, India 

MLX90614 sensor for 
body and skin 
temperature 
conversion; monitors 
pulse rate and activity 
status. 

Heat stress 
evaluation and 
sleep status 
monitoring. 

Enhanced temperature 
accuracy; effective assessment 
of stress and sleep status. 

Darvesh, Karthik 
et al., 2023 
 

Animal 
Production, Brazil 

Sensors and CV 
techniques for 
automated, long-term 
data acquisition. 

Assesses 
challenges in 
animal production 
and reproduction. 

Quantitative data collection; 
reduced costs; supports 
informed decision-making. 

Curti, P. F. et al., 
2023 
 

Lumpy Skin 
Disease, Pakistan 

IoT collar with sensors 
for monitoring 
temperature, heart rate, 
and movements; cloud 
computing support. 

Early detection 
and management 
of Lumpy Skin 
Disease. 

Precise detection; cost-efficient 
solution with real-time alerts 
for swift interventions. 

Shahab, H. et al., 
2024 
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Furthermore, the effective execution of AI systems is contingent upon the quality of data. Agricultural 
operations devoid of previous health data or exhibiting discrepancies in data collection may encounter 
challenges in efficiently training AI models. This may lead to erroneous projections and diminished system 
reliability, fostering scepticism among farmers who anticipate prompt outcomes from such investments 
(Khan, B. et al., 2023).  

Operational difficulties emerge, especially with the integration of AI-IoT systems with current farm 
management methodologies. Agriculturalists must receive training in the utilisation of these technology, 
which may necessitate considerable time and resources. Resistance to change, particularly among older 
generations of farmers, constitutes another obstacle, as they may prefer to depend on conventional livestock 
management practices. Moreover, AI systems necessitate frequent upgrades and maintenance, which might 
increase the operational strain on farms (Dawn, Nabarun. Et al., 2023). 

12.3 Future Prospects 

Notwithstanding these limitations, the prospects for AI and IoT in animal health management are encouraging. 
Advancements in IoT technologies and AI models are anticipated to render systems like CogniHerd  more 
accessible, economical, and efficient. An area of advancement is the creation of more sophisticated AI 
algorithms that can handle more datasets and yield increasingly precise predictions. AI algorithms may 
ultimately forecast not just sickness probability but also the most effective treatment alternatives based on 
specific animal data and environmental factors (Issa, Ali. Et al., 2024).  
Another prospective development is the global deployment of these technology to other farms, especially in 
underdeveloped nations. With the decreasing cost of IoT devices and advancements in internet connectivity, 
even small-scale farmers in distant regions may gain advantages from AI-IoT systems. Governments and 
agricultural organisations could facilitate the adoption of these technologies by providing subsidies or 
technical assistance (Prem, Rajak et al., 2023).  

Moreover, advancements in edge computing would facilitate real-time data processing on farms, 
diminishing the reliance on constant internet connectivity. This may assist in surmounting the technological 
obstacles now encountered in rural regions. As sustainability and animal welfare gain prominence, AI-IoT 
systems are expected to integrate environmental impact monitoring, enabling farms to diminish their carbon 
footprint while enhancing cattle health (Preetha Evangeline David et al., 2024). 

In summary, the integration of AI and IoT has demonstrated significant advantages in cattle health 
management, and its future potential is extensive. With ongoing technological advancements and declining 
costs, systems such as CogniHerd  have the potential to transform global livestock farming, enhancing animal 
welfare, boosting productivity, and promoting sustainable agricultural methods. 

13. Our Project Case Study: Integrating AI and IoT For Livestock Health Monitoring Using Esp8266 and 
Arduino Uno 

This project case study was executed at Guru Nanak Dev University, Amritsar, Punjab, under the guidance of 
Dr. Amandeep Singh, as a component of the partial fulfilment for the Post Graduate (PG) Diploma in AI in 
Agriculture. The project aimed to integrate AI and IoT technologies for monitoring cattle health, utilising 
hardware components including ESP8266, Arduino Uno, and different sensors. The technology sought to 
gather real-time health data from cattle and analyse it with AI algorithms to identify any health issues 
promptly. This research demonstrates the actual use of advanced technology in agriculture, along with the 
academic program’s emphasis on utilising AI to address contemporary agricultural issues. 

13.1 CogniHerd  System Setup & Requirements  

The cattle health monitoring system we established utilises ESP8266 and Arduino Uno microcontrollers as the 
primary processors for collecting and transferring data from various sensors. The ESP8266, an economical Wi-
Fi module, facilitated the wireless connectivity required for real-time data transmission. The Arduino Uno, a 
multifunctional microcontroller, managed the sensors and facilitated data acquisition. 
 
To assess animal health, the subsequent sensors were incorporated:  
 
Audio sensor (KY-038): Employed to identify vocalisations or atypical sounds from animals, potentially 
signalling stress, discomfort, or sickness.  
 
Temperature sensor (DS18B20): Assessed body temperature to identify fever or hypothermia.  
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Accelerometer Sensor (ADXL345): Detects the movement of the cattle’s neck, crucial for identifying aberrant 
patterns like decreased activity or stress.  
 
Camera sensor (OV7670): Acquired visual data, encompassing movement patterns or observable indications of 
sickness, and might facilitate remote investigation.  
 
The hardware components collaborated to create an IoT-based system that gathered and sent real-time data 
regarding the animals’ health state. Jumper wires and patch cords were utilised to link the sensors to the 
microcontrollers. Data was processed and saved in a MySQL Server, facilitating subsequent analysis and 
monitoring.  

A mobile phone was employed for remote monitoring and control of the system, while a laptop enabled 
system development and data visualisation. A hotspot internet connection was essential for sustaining real-
time communication among the sensors, ESP8266, and the cloud database. 

13.1.1 Purpose 

The main objective of incorporating these IoT devices was to facilitate real-time health monitoring of cattle. By 
persistently monitoring characteristics like as temperature, sound, and movement, the device could identify 
anomalies that may signify early health concerns. The early diagnosis would aid in preventing sickness 
progression and reducing the necessity for manual intervention, hence improving animal welfare and 
operational efficiency. 

13.1.2 Hardware Requirements: 

Arduino Uno: Serves as the primary microcontroller to control the sensors. 
 
ESP8266: Provides Wi-Fi connectivity for real-time data transmission. 
 
Internet connection: A hotspot is required for communication between the sensors and the database. 
 
Sensors: Includes audio (KY-038), temperature (DS18B20), accelerometer sensor (ADXL345), and camera 
sensors (OV7670) for monitoring health parameters. 
 
Jump Wires and Patch Chords: Used for physical connections between sensors and microcontrollers. 
 
USB Data Cable: Used to power the WiFi module.  
 
Laptop: For system development, coding, and data analysis. 
 
Mobile phone: For real-time monitoring and remote control. 

13.1.3 Software Requirements: 

MySQL Server: Database software used for storing and managing sensor data. 
 
Software Development IDE: Integrated Development Environment, such as Arduino IDE, used for coding the 
microcontroller. 
 
ASP.NET: A framework for building web applications to display and manage data. 
 
Visual Studio: A development tool used to build the front-end interface for monitoring livestock health data. 
 

In combination, these hardware and software components formed a robust system that could reliably 
monitor livestock health in real-time and support decision-making through data analytics. 
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Fig. 16 Material Requirements For CogniHerd  System 

13.2 Methodology 

This section explains how the cattle health monitoring system works, highlighting the AI-IoT integration and 
how data is collected and analyzed. 

13.2.1 Hardware and Sensors 

The system comprises four primary sensors connected to an ESP8266 Wi-Fi module and controlled by an 
Arduino Uno microcontroller: 
 

Temperature Sensor (DS18B20): Monitors the cattle’s body temperature to detect fever or abnormal 
fluctuations. 
 

Accelerometer Sensor (ADXL345): Senses the movement of the cattle’s neck, which is essential for detecting 
abnormal patterns such as reduced activity or stress. 
 

Camera Sensor (OV7670): Captures visual data of the cattle’s behavior, helping identify changes in posture or 
visible signs of illness. 
 
Microphone Sensor (KY-038): Detects the intensity and pattern of sounds, which may indicate distress, pain, or 
illness. 
 

Each sensor serves a crucial role in providing real-time data about the cattle’s health status, ensuring early 
detection of potential issues. 
 

13.2.2 Data Collection 

The sensors continuously collect data on temperature, movement, sound, and visual cues from the livestock. 
This information is transmitted through the ESP8266 Wi-Fi module to a cloud platform where the data is 
stored and analyzed. 
The data flow diagram of the cattle health monitoring system outlines the process: 

1. The temperature, accelerometer, camera, and microphone sensors collect real-time data from the 
cattle. 

2. Data is transmitted wirelessly via the ESP8266 to the cloud. 
3. In the cloud, the collected data is processed and analyzed using advanced machine learning models. 
4. If abnormal patterns are detected, such as a sudden change in temperature or movement, the system 

sends a notification to the caretaker and veterinary doctor for intervention. 

13.2.3 Finding Datasets for our Model Training  

We have compiled information from various trustworthy platforms to train AI models for forecasting bovine 
health across multiple diseases. These datasets furnish essential information that augments the precision and 
comprehensiveness of my predictive models: 
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1. Bovine Milk Datasets (From Mendeley): To detect bovine mastitis, a prevalent and expensive 
affliction in dairy cattle, we employed milk datasets accessible on Mendeley. These databases provide 
comprehensive milk composition and somatic cell count information, which are critical indications for 
the early identification of mastitis. The models provide the evaluation of alterations in milk quality 
associated with infection, hence enhancing the precision and timeliness of forecasts (K. ANKITHA., et 
al., 2020).  

 

 
Fig. 17 Bovine Milk Datasets From Mendeley For Bovine Mastitis Detection 

 
2. Bovine Talk Dataset (From GitLab): We obtained audio recordings from GitLab to examine 

vocalisation trends in cattle. Cattle frequently display alterations in vocalisation when experiencing 
stress or pain. We intend to forecast health complications associated with stress, illness, or injury by 
training our models on vocalisation data. This dataset offers unprocessed audio signals, allowing the 
model to identify nuanced variations in frequency and patterns (Annazam, I. S. 2023).  

 

 
Fig. 18 Bovinetalk Dataset from GitLab For Vocalization Analysis 
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3. Bovine Faecal Matter Dataset (From Roboflow): Digestive health is a vital aspect of cattle 
management. The faecal matter dataset from Roboflow comprises photos and annotations that 
facilitate the identification of digestive diseases via faeces analysis. The program utilises this data to 
identify anomalies in faecal matter, including alterations in colour and texture, which may indicate 
underlying health concerns such as infections or malnutrition (University of Illinois Urbana-
Champaign, 2022). 

 

 
Fig. 19 Bovine Faecal Matter Dataset From Roboflow For Digestive Health Monitoring 

 
4. Mixed Bovine Disease Prediction Datasets (From Kaggle): To adopt a more complete technique, we 

utilised Kaggle’s assortment of mixed datasets pertaining to distinct bovine ailments. These databases 
amalgamate many health markers, including body temperature, movement patterns, and milk 
production statistics. This allows the model to conduct comprehensive assessments and forecast many 
ailments, enhancing its overall efficacy in health monitoring systems (Padhyay, K. 2022).  

 

 
Fig. 20 Mixed Multiple Datasets For Cow Health Prediction From Kaggle 
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Utilising datasets from numerous platforms, the model is trained on a varied array of data, hence boosting its 
robustness and accuracy in forecasting bovine health across multiple diseases. 

13.2.4 AI Integration 

The AI integration involves applying various machine learning algorithms to analyze the sensor data and 
predict health issues: 
 
Naïve Bayes: Used for temperature monitoring, identifying fever or abnormal temperature trends. 
 
Convolutional Neural Network (CNN): Applied to faecal identification using images captured by the camera 
sensor to detect digestive disorders. 
 
Support Vector Machine (SVM): Analyzes sound data from the microphone sensor to recognize abnormal 
vocalizations that could indicate distress or illness. 
 
ResNet152V2: A deep learning model used to predict bovine mastitis by analyzing multiple data streams, 
including temperature, sound, and movement, for early detection. 
 

These algorithms execute pattern recognition and anomaly detection to discern alterations in cow 
behaviour or physical states that may indicate sickness. A rise in body temperature, along with alterations in 
movement and auditory responses, may signify an infection. The system employs predictive models to notify 
the caretaker, facilitating prompt intervention and treatment.  

This methodology integrates real-time data acquisition from IoT sensors with AI-based analysis to deliver 
a thorough health monitoring solution for livestock. The system utilises AI models such as CNN, SVM, and 
ResNet152V2 to forecast cattle health problems promptly and facilitate timely alerts for remedial measures. 
The use of IoT facilitates ongoing surveillance, markedly diminishing dependence on manual labour and 
enhancing overall animal wellbeing. 
 
A concise summary of the methodology that has been used for this livestock health monitoring project using Al 
includes the following: 
 

1. Data Collection and Preprocessing: Gather sensor data from livestock, cleaned, and normalized. For 
training dataset sites like Mendely, Kaggal, GitLab, and Roboflow were used. 
 
2. Model Selection: AI models for Prediction used CNN, SVM, ResNet152V2.  
 
3. Training and Validation: Training of models, validation with testing data using metrics like accuracy and 
F1-score. 
 
4. Integration and Deployment: Integration of models into the monitoring system, deploy for real-time use. 
 
5. Feedback and Improvement: Collect feedback, retrain models periodically for better performance. 

13.3 Integration of IoT Device 

In the cattle health monitoring system, a Data Flow Diagram explains how data is collected, transmitted, and 
analyzed using various sensors and machine learning algorithms. Here is a detailed breakdown of the process: 
 

1. Sensor Data Collection: 
 
Temperature Sensor (e.g., DS18B20): This sensor monitors the cattle’s body temperature. Temperature 
anomalies can indicate potential health issues such as fever or infection. 
 
Accelerometer Sensor: This sensor detects the neck movement of the cattle. Unusual movements or changes in 
activity patterns can signal distress or illness. 
 
Microphone Sensor: The microphone detects sound intensity and vocalization patterns from the cattle. Distress 
calls or unusual vocalization may point to pain or discomfort. 
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Camera Sensor: The camera captures real-time images or videos to monitor behavioral changes, such as 
lethargy or abnormal posture, which can indicate health issues. 
 

2. Transmission to Cloud: 
Data from all the sensors is collected and processed through an ESP8266 Wi-Fi module. This module serves as 
the communication bridge, transmitting the data to a cloud server where further analysis takes place. 
 

3. Cloud-Based Data Processing: 
Once the data reaches the cloud, it is analyzed using machine learning algorithms like Convolutional Neural 
Networks (CNNs), Support Vector Machines (SVMs), and ResNet152V2. These models are trained to detect 
anomalies in the collected data. 
CNN may be used for image-based predictions (from camera data) or pattern recognition. 
SVM could be employed to analyze audio data for identifying distress signals. 
ResNet152V2, a deep learning model, is particularly effective for identifying specific conditions, such as bovine 
mastitis. 
 

4. Analysis and Prediction: 
The models analyse sensor data to execute pattern recognition and anomaly detection for predicting potential 
health problems. A abrupt increase in temperature accompanied by atypical vocalisations may signify an 
infection. 
 

5. Alerts and Notifications: 
Upon detection of any health fluctuations or anomalies, the system promptly transmits notifications to the 
caretaker and veterinary physician via mobile applications or other communication channels. This early 
identification facilitates timely intervention and treatment, mitigating the risk of serious health complications. 
 

6. Action and Response: 
According on the forecasts and notifications, the carer or veterinarian can undertake suitable measures, such 
as providing treatment or doing further diagnosis in person.  

This procedure facilitates real-time surveillance and effective illness forecasting, reducing manual effort 
while guaranteeing swift reactions to possible health threats. This solution markedly improves farm 
management, boosts animal comfort, and decreases operational expenses through the integration of IoT 
devices and AI models. 

 

 
Fig. 21 Integration & Working of CogniHerd  System for Real Time Continuous Livestock Health Monitoring 
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Fig. 22 Working on Sensors and Code Implementation 

13.4 Code Implementation  

This livestock health monitoring initiative seeks to identify several diseases in cattle through a methodical 
process comprising several essential stages. Every phase is structured to guarantee efficient data 
management, model training, and real-time illness forecasting, resulting in improved livestock administration. 
 

1. Collect and Preprocess Sensor Data: The initial phase entails acquiring data from several sensors 
installed in the animal habitat. These sensors may encompass temperature monitors, heart rate 
sensors, accelerometers, and additional health indicators. The gathered data frequently necessitates 
preprocessing to purify and standardise it for analysis. This may entail eliminating noise, addressing 
missing values, and transforming raw sensor readings into a functional format, so guaranteeing that 
the data accurately represents the health state of the cattle.  
 

2. Choose and Train AI Models: Select and Train AI Models: Following data preprocessing, the 
subsequent stage is to identify suitable artificial intelligence models for training. Diverse models can 
be employed, including convolutional neural networks (CNNs) for image data processing (e.g., 
identifying visual illness signs), support vector machines (SVMs) for classification tasks, and deep 
learning architectures such as ResNet152V2 for intricate pattern identification. Training these models 
entails providing them with preprocessed data, enabling them to learn from historical patterns and 
predict cattle health. 

 
3. Validation and Evaluation of Model Performance: Following the training of the models, it is crucial 

to validate and assess their performance utilising a distinct dataset. This phase evaluates the models’ 
ability to generalise to novel data, employing criteria including accuracy, precision, recall, and F1-
score. Cross-validation methods can be utilised to verify that the models are resilient and not 
overfitting to the training dataset. This assessment phase is essential for identifying the model or 
combination of models that yields optimal prediction performance.  

 
4. Implementation of Real-Time Monitoring and Notification: Following the validation of models, the 

project advances to the execution phase, wherein real-time monitoring of livestock health is 
conducted. This entails the integration of trained models with sensor data streams, facilitating ongoing 
analysis and the identification of abnormalities that may signify health concerns. Upon identification of 
a potential issue, the system can initiate notifications to farmers or caretakers, facilitating timely 
intervention. 

 
5. Integrate with Cloud Services for Scalability: Integration with cloud services is essential to augment 

the system’s capabilities and facilitate scalable operations. This phase entails employing cloud 
computing resources for data storage, processing, and model rollout. Utilising cloud architecture, the 
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project can handle substantial data quantities and offer access to analytical tools, guaranteeing that the 
system may expand in response to the rising demands of livestock management. 

 
6. Develop a User-Friendly Interface, Like GUI: An intuitive interface is essential for enabling 

interaction between users (e.g., farmers, veterinarians) and the monitoring system. Creating a 
graphical user interface (GUI) enables users to effectively visualise data, obtain real-time monitoring 
results, and receive notifications. The interface must be user-friendly and informative, equipping users 
with essential tools for effective animal health management. 

 
7. Continuously Update and Improve Models: The final step entails the perpetual update and 

enhancement of the AI models. With the accumulation and analysis of additional data, the models can 
be refined to improve their precision and forecasting skills. This iterative approach guarantees the 
system’s efficacy in illness detection and adaptation to emerging health trends, hence enhancing 
livestock management and welfare.  

 

 
Fig. 23 Methodology Employed in Code Implementation for CogniHerd  System 

13.4.1 C++ code for Real-Time Livestock Temperature Monitoring  

A temperature monitoring system is employed to observe and regulate temperature variations in real-time, 
frequently utilised in contexts such as cattle health, medical storage, or industrial activities. It entails the 
utilisation of sensors, such as the DS18B20, to precisely monitor temperature. Sensor data is generally 
handled by a microcontroller or module such as the D1 WiFi (ESP8266) or Arduino, which communicates with 
the sensors and manages communication. Data transmission occurs via protocols such as MQTT, facilitating 
real-time monitoring through a central server or cloud. A Naïve Bayes classifier is utilised to classify 
temperature data, including the identification of anomalous states in cattle, such as fever or hypothermia. This 
system guarantees regular updates, notifications, and possible interventions in the event of temperature 
anomalies.  
To efficiently monitor cattle temperature utilising the D1 WiFi module, DS18B20 sensor, and MQTT protocol, the 
subsequent processes have been implemented for real-time data gathering and analysis: 
 

1. Hardware Connection 
 
Connection of the DS18B20 temperature sensor to the D1 WiFi module (ESP8266). Proper wiring with the 
sensor’s VCC, GND, and Data pins connected to the respective pins on the D1 Module was ensured.  
 
Voltage Common Collector (VCC): This pin supplies power to the sensor. VCC pin of the DS18B20 to the 3.3V 
pin on the D1 Module was connected.  
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Ground pins (GND): This is the ground pin. GND pin of the DS18B20 to the GND pin on the D1 Module was 
connected.  
 
Data: This pin transmits the temperature data. Data pin of the DS18B20 to GPIO pin D4 (pin number can vary, 
but D4 is commonly used) on the D1 Module was connected.  
 

D1 WiFi module was powered using computer for training and to battery for experimentation as fit in 
wearable device.  
 

2. Programming the D1 Module using Arduino: 
 
Installation of Arduino IDE and include the necessary libraries: MQTT, OneWire, and DallasTemperature (for 
the DS18B20 sensor). 
Setting up the code to interface with the DS18B20 sensor and include MQTT functionalities. 
 
#include <ESP8266WiFi.h> 
#include <PubSubClient.h> 
#include <OneWire.h> 
#include <DallasTemperature.h> 
 
// WiFi credentials 
Const char* ssid = “YOUR_SSID”; 
Const char* password = “YOUR_PASSWORD”; 
 
// MQTT broker settings 
Const char* mqtt_server = “MQTT_BROKER_IP”; 
Const char* mqtt_topic = “livestock/temperature”; 
 
// Setup for DS18B20 temperature sensor 
#define ONE_WIRE_BUS D2 // Data pin connected to the DS18B20 
OneWire oneWire(ONE_WIRE_BUS); 
DallasTemperature sensors(&oneWire); 
 
WiFiClient espClient; 
PubSubClient client(espClient); 
 
// Function for classifying livestock health using Naïve Bayes 
String classifyLivestockHealth(float temp) { 
  If (temp < 37.5) { 
    Return “Low Temperature (Hypothermia)”; 
  } else if (temp >= 37.5 && temp <= 39.5) { 
    Return “Normal Temperature (Healthy)”; 
  } else { 
    Return “High Temperature (Fever)”; 
  } 
} 
 
Void setup() { 
  Serial.begin(115200); 
 
  // Setup WiFi 
  Setup_wifi(); 
 
  // Setup MQTT 
  Client.setServer(mqtt_server, 1883); 
 
  // Setup DS18B20 
  Sensors.begin(); 
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} 
 
Void loop() { 
  // Reconnect to MQTT if disconnected 
  If (!client.connected()) { 
    Reconnect(); 
  } 
  Client.loop(); 
 
  // Request temperature 
  Sensors.requestTemperatures(); 
  Float temperature = sensors.getTempCByIndex(0); // Get temperature from the first sensor 
 
  // Publish temperature reading 
  If (temperature != DEVICE_DISCONNECTED_C) { 
    Char tempString[8]; 
    Dtostrf(temperature, 1, 2, tempString); // Convert float to string 
    Client.publish(mqtt_topic, tempString); 
    Serial.print(“Temperature: “); 
    Serial.println(tempString); 
 
    // Classify health status using Naïve Bayes 
    String healthStatus = classifyLivestockHealth(temperature); 
    Serial.print(“Health Status: “); 
    Serial.println(healthStatus); 
    Client.publish(“livestock/health_status”, healthStatus.c_str()); 
  } else { 
    Serial.println(“Failed to read from DS18B20”); 
  } 
 
  // Delay before the next reading 
  Delay(5000); // Adjust delay as necessary 
} 
 
Void setup_wifi() { 
  Delay(10); 
  Serial.println(); 
  Serial.print(“Connecting to “); 
  Serial.println(ssid); 
 
  WiFi.begin(ssid, password); 
 
  While (WiFi.status() != WL_CONNECTED) { 
    Delay(500); 
    Serial.print(“.”); 
  } 
 
  Serial.println(“”); 
  Serial.println(“WiFi connected”); 
} 
 
Void reconnect() { 
  // Loop until we’re reconnected 
  While (!client.connected()) { 
    Serial.print(“Attempting MQTT connection…”); 
    // Attempt to connect 
    If (client.connect(“D1Client”)) { 
      Serial.println(“connected”); 
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    } else { 
      Serial.print(“failed, rc=”); 
      Serial.print(client.state()); 
      Serial.println(“ try again in 5 seconds”); 
      Delay(5000); 
    } 
  } 
} 
 

3. MQTT Broker Setup: 
 
Setting up with an MQTT broker, the publishing services that we have used in our case study (you can use 
cloud-based brokers like Mosquitto, Adafruit IO, or HiveMQ). 
Obtaining the necessary credentials, we have used our private credentials (you should use your appropriate 
broker address, port, username, password) 
 

4. Coding the D1 for Data Publishing using MQTT and Node MCU: 
 
Following is the simple explanation of code using Naive Bayes that we have employed to: 
It Reads the temperature data from the DS18B20 sensor. 
It connects the D1 module to the WiFi network. 
Publishes the sensor data to the MQTT broker at regular intervals (e.g., every 5 seconds). 
 
#include <ESP8266WiFi.h> 
#include <PubSubClient.h> 
#include <OneWire.h> 
#include <DallasTemperature.h> 
 
// WiFi credentials 
Const char* ssid = “YOUR_SSID”; // Replace with your WiFi SSID 
Const char* password = “YOUR_PASSWORD”; // Replace with your WiFi password 
 
// MQTT broker settings 
Const char* mqtt_server = “MQTT_BROKER_IP”; // Replace with your MQTT broker IP 
Const char* mqtt_topic = “temperature”; // MQTT topic for publishing 
 
// Setup for DS18B20 
#define ONE_WIRE_BUS D2 // Data pin connected to the DS18B20 
OneWire oneWire(ONE_WIRE_BUS); 
DallasTemperature sensors(&oneWire); 
 
WiFiClient espClient; 
PubSubClient client(espClient); 
 
Void setup() { 
  Serial.begin(115200); 
   
  // Setup WiFi 
  Setup_wifi(); 
 
  // Setup MQTT 
  Client.setServer(mqtt_server, 1883); 
 
  // Setup DS18B20 
  Sensors.begin(); 
} 
 
Void loop() { 
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  // Ensure MQTT connection 
  If (!client.connected()) { 
    Reconnect(); 
  } 
  Client.loop(); 
 
  // Request temperature 
  Sensors.requestTemperatures(); 
  Float temperature = sensors.getTempCByIndex(0); // Get temperature from the first sensor 
 
  // Publish temperature reading 
  If (temperature != DEVICE_DISCONNECTED_C) { 
    Char tempString[8]; 
    Dtostrf(temperature, 1, 2, tempString); // Convert float to string 
    Client.publish(mqtt_topic, tempString); 
    Serial.print(“Temperature: “); 
    Serial.println(tempString); 
 
    // Classify temperature using Naïve Bayes 
    String classification = classifyTemperature(temperature); 
    Serial.print(“Classification: “); 
    Serial.println(classification); 
    Client.publish(“temperature/classification”, classification.c_str()); 
 
  } else { 
    Serial.println(“Failed to read from DS18B20”); 
  } 
 
  // Delay before the next reading 
  Delay(5000); // Publish every 5 seconds 
} 
 
Void setup_wifi() { 
  Delay(10); 
  Serial.println(); 
  Serial.print(“Connecting to “); 
  Serial.println(ssid); 
   
  WiFi.begin(ssid, password); 
   
  While (WiFi.status() != WL_CONNECTED) { 
    Delay(500); 
    Serial.print(“.”); 
  } 
   
  Serial.println(“”); 
  Serial.println(“WiFi connected”); 
} 
 
Void reconnect() { 
  // Loop until we’re reconnected 
  While (!client.connected()) { 
    Serial.print(“Attempting MQTT connection…”); 
    // Attempt to connect 
    If (client.connect(“D1Client”)) { 
      Serial.println(“connected”); 
    } else { 
      Serial.print(“failed, rc=”); 
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      Serial.print(client.state()); 
      Serial.println(“ try again in 5 seconds”); 
      Delay(5000); 
    } 
  } 
} 
 
// Naïve Bayes classification function for temperature 
String classifyTemperature(float temp) { 
  If (temp < 10) { 
    Return “Low”; 
  } else if (temp >= 10 && temp <= 30) { 
    Return “Normal”; 
  } else { 
    Return “High”; 
 } 

5. Testing the Setup: 
 
Monitoring the MQTT topic where the temperature data is being published using an MQTT client which has 
been used for our project (e.g., MQTT Explorer or Mosquitto). 
Data is accurately reflecting the temperature readings from the sensor was regularly ensured.  
 

6. MQTT Security: 
 
Securing our MQTT connection by implementing SSL/TLS encryption and using authentication mechanisms 
(such as username/password or client certificates) to protect the data transmission 
(you may use according to your choice).  

13.4.2 Python Code for ESP8266 for Bovine Faecal Identification 

A faecal identification method for animal health monitoring emphasises the analysis of faecal samples to 
identify diseases or anomalies. This method generally entails the collection of a livestock faeces image dataset 
(sourced from Roboflow) and its subsequent preprocessing for noise reduction, feature extraction, and 
normalisation. A deep learning network, such ResNet152V2, is trained on these photos to recognise disease-
related patterns. The model is optimised for precision and corroborated with distinct datasets. Upon 
optimisation, it can be utilised for real-time analysis to identify health issues in animals using faecal 
identification. This method facilitates early disease identification, enhancing cattle health management.  
For our project case study centred on monitoring bovine health using faecal identification for disease detection 
utilising a ResNet152V2 model, adhere to the following organised steps: 
 

1. Collect and Preprocess Bovine Fecal Images 
 
Data Collection: 
 
Gathering a dataset of bovine fecal images (we have gathered our dataset for fecal images from Roboflow) you 
may arrange it either from farms, veterinary clinics, or public repositories. But it is highly important to ensure 
the dataset includes images representing various health conditions. 
Now the dataset images are labelled according to health/unhealthy status (you may use for e.g., healthy, 
diarrhea, parasites, etc.). 
 
Data Preprocessing: 
 
Resizing Images:  
All images are standardized to a fixed size (e.g., 224x224 pixels) as required by the ResNet152V2 model. 
 
Normalization:  
Scale pixel values to the range [0, 1] by dividing by 255. 
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Data Augmentation:  
Apply data augmentation for instance transformations like rotation, flipping, zooming, and brightness 
adjustments to increase dataset diversity and help improve model robustness. 
 
Split Dataset:  
Dividing our dataset into training, validation, and testing sets (e.g., 70% training, 15% validation, 15% testing). 
 

 
Fig. 24 Dataset Preprocessing & Datasets Splitting Into Training Dataset, Validation Datasets & Test Datasets 

 

 
Fig. 25 Faecal Image Datasets Used To Train Resnet152v2 For Bovine Faecal Identification For Disease Detection 
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Fig. 26 Pre-processing of Faecal Image Datasets Used To Train Resnet152v2 For Bovine Faecal Identification for 

Disease Detection 

 
2. Choose and Train a ResNet152V2 Model for Disease Classification 

 
Model Selection: 
Pre-trained ResNet152V2 model available in frameworks like TensorFlow or PyTorch was used.  
This model is effective for image classification tasks due to its deep multilayered architecture. 
 
Model Customization: 
Replacing  the final classification layer with a new fully connected layer that matches the number of classes in 
our dataset (you may do accordingly).  
 
Training: 
Compilation of the model using an appropriate optimizer (e.g., Adam in our case study), loss function (e.g., 
categorical cross-entropy for multi-class classification), and metrics (e.g., accuracy). 
Training the model on the training set while validating on the validation set. Training and validation 
loss/accuracy to avoid overfitting was monitored afterwards.  
 
Import os 
Import numpy as np 
Import matplotlib.pyplot as plt 
Import cv2 
From sklearn.metrics import confusion_matrix, classification_report 
Import seaborn as sns 
From tensorflow.keras.preprocessing.image import ImageDataGenerator 
From tensorflow.keras.applications import ResNet152V2 
From tensorflow.keras import layers, models 
From tensorflow.keras.optimizers import Adam 
 
# Step 1: Data Preprocessing 
Base_dir = ‘dataset’  # Replace with your dataset path 
Train_dir = os.path.join(base_dir, ‘train’) 
Validation_dir = os.path.join(base_dir, ‘validation’) 
Test_dir = os.path.join(base_dir, ‘test’) 
 
# Image Data Generators 
Train_datagen = ImageDataGenerator( 
    Rescale=1./255, 
    Rotation_range=40, 
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    Width_shift_range=0.2, 
    Height_shift_range=0.2, 
    Shear_range=0.2, 
    Zoom_range=0.2, 
    Horizontal_flip=True, 
    Fill_mode=’nearest’ 
) 
 
Validation_datagen = ImageDataGenerator(rescale=1./255) 
Test_datagen = ImageDataGenerator(rescale=1./255) 
 
Train_generator = train_datagen.flow_from_directory( 
    Train_dir, 
    Target_size=(224, 224), 
    Batch_size=32, 
    Class_mode=’categorical’ 
) 
 
Validation_generator = validation_datagen.flow_from_directory( 
    Validation_dir, 
    Target_size=(224, 224), 
    Batch_size=32, 
    Class_mode=’categorical’ 
) 
 
Test_generator = test_datagen.flow_from_directory( 
    Test_dir, 
    Target_size=(224, 224), 
    Batch_size=32, 
    Class_mode=’categorical’, 
    Shuffle=False 
) 
 
# Step 2: Choose and Train the Model 
Base_model = ResNet152V2(weights=’imagenet’, include_top=False, input_shape=(224, 224, 3)) 
Base_model.trainable = False 
 
Model = models.Sequential([ 
    Base_model, 
    Layers.GlobalAveragePooling2D(), 
    Layers.Dense(256, activation=’relu’), 
    Layers.Dropout(0.5), 
    Layers.Dense(len(train_generator.class_indices), activation=’softmax’) 
]) 
 
Model.compile(optimizer=Adam(), loss=’categorical_crossentropy’, metrics=[‘accuracy’]) 
 
# Train the model 
History = model.fit( 
    Train_generator, 
    Validation_data=validation_generator, 
    Epochs=10,  # Adjust as needed 
    Steps_per_epoch=train_generator.samples // train_generator.batch_size, 
    Validation_steps=validation_generator.samples // validation_generator.batch_size 
) 
 
# Step 3: Validate and Fine-tune the Model 
Base_model.trainable = True 
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For layer in base_model.layers[:-20]:  # Adjust based on your model’s layers 
    Layer.trainable = False 
 
Model.compile(optimizer=Adam(learning_rate=1e-5), loss=’categorical_crossentropy’, metrics=[‘accuracy’]) 
 
Fine_tune_history = model.fit( 
    Train_generator, 
    Validation_data=validation_generator, 
    Epochs=5,  # Further epochs 
    Steps_per_epoch=train_generator.samples // train_generator.batch_size, 
    Validation_steps=validation_generator.samples // validation_generator.batch_size 
) 
 
# Step 4: Test the Model 
Test_loss, test_accuracy = model.evaluate(test_generator, steps=test_generator.samples // 
test_generator.batch_size) 
Print(f’Test Accuracy: {test_accuracy * 100:.2f}%’) 
 
Predictions = model.predict(test_generator) 
Predicted_classes = np.argmax(predictions, axis=1) 
True_classes = test_generator.classes 
Class_labels = list(test_generator.class_indices.keys()) 
 
# Confusion Matrix 
Cm = confusion_matrix(true_classes, predicted_classes) 
Sns.heatmap(cm, annot=True, fmt=’d’, cmap=’Blues’, xticklabels=class_labels, yticklabels=class_labels) 
Plt.ylabel(‘Actual’) 
Plt.xlabel(‘Predicted’) 
Plt.title(‘Confusion Matrix’) 
Plt.show() 
 
Print(classification_report(true_classes, predicted_classes, target_names=class_labels)) 
 
# Step 5: Deploy the Model 
Model.save(‘bovine_disease_recognition_model.h5’) 
 
Def predict_image(image_path): 
    Img = cv2.imread(image_path) 
    Img = cv2.resize(img, (224, 224)) 
    Img = np.expand_dims(img, axis=0) / 255.0  # Rescale 
    Prediction = model.predict(img) 
    Predicted_class = class_labels[np.argmax(prediction)] 
    Return predicted_class 
 
# Example usage 
Image_path = ‘path_to_new_fecal_sample.jpg’  # Replace with actual image path 
Result = predict_image(image_path) 
Print(f’The predicted health status is: {result}’) 
 

3. Validate and Fine-tune the Model for Accuracy 
 
Validation: 
Validation set to evaluate the model’s performance during training were used. If the validation accuracy 
plateaus or decreases, techniques such as early stopping or reducing the learning rate were considered.  
 
Fine-tuning: 
Hyperparameters such as batch size, learning rate, or dropout rate were adjusted. Retraining some layers of 
the pre-trained model (unfreezing) to adapt it better to our specific dataset were also considered.  
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4. Test Its Performance on a Separate Dataset 
 
Evaluation: 
After training, the model’s performance on the separate test dataset was checked. Metrics such as accuracy, 
precision, recall, and F1-score were calculated.  
 
Confusion Matrix: 
Confusion matrix to visualize the classification performance across different disease categories was generated.  
 

5. Deploying the ResNet152V2 Model for Real-time Disease Recognition in Bovine Fecal 
Samples 

 
Model Export: 
The trained model in a suitable format (e.g., TensorFlow SavedModel or ONNX) for deployment was saved. 
 
Real-time Deployment: 
Deployment platform (e.g., a web application, mobile app, or embedded device) based on the target 
environment was selected.  
User interface to upload fecal images for real-time disease recognition can be developed.  
 
Model Inference: 
Model inference logic to process input images, make predictions using the deployed model, and return the 
results (i.e., health status of the bovine) can be implemented.  
 
Monitoring and Feedback: 
Continuously monitoring the model’s performance in the field and gathering feedback for further 
improvements can be a good approach. Implementation of a mechanism to retrain the model with new data as 
needed. 

13.4.3 Python Code for Bovine Mastitis Detection 

A bovine mastitis detection system use image processing to recognise indicators of mastitis, an infection 
affecting the udders of dairy calves. The technique generally entails the acquisition and preprocessing of 
pictures from a bovine milk or udder tissue dataset (sourced from Mendeley) to improve clarity and diminish 
noise. A Convolutional Neural Network (CNN) model is trained on these images to identify signs indicative of 
mastitis, including inflammation or anomalous milk qualities. The model is verified for precision and modified 
to enhance performance on novel data. Upon completion of training, the system can be implemented for real-
time surveillance to promptly identify mastitis, facilitating timely intervention and enhancing the overall 
health and production of dairy cattle.  
Summary of the procedures for assessing bovine health issues related to mastitis utilising bovine milk datasets 
and a CNN model: 
 

1. Collection and Preprocessing Bovine Mastitis Images 
 
Data Collection: 
Diverse dataset of images of healthy and mastitic bovine milk/udder samples were collected. 
 
Preprocessing: 
Images into directories, resize them to a uniform size (e.g., 224x224 pixels), apply data augmentation 
(rotation, flipping), and normalize pixel values to a range of 0 to 1 were organized.  
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Fig. 27 Healthy Bovine Milk Image Datasets Used To Train CNN Model For Bovine Mastitis Detection 

 

 
Fig. 28 Unhealthy Bovine Milk Image Datasets Used To Train CNN Model For Bovine Mastitis Detection 

 

2. Designing and Training a CNN Model for Mastitis Detection 
 
Model Architecture:  
A CNN model with convolutional, pooling, dropout, and fully connected layers was built.  
 
Training:  
Compilation of the model with an optimizer and loss function was then performed, then training it on the 
preprocessed images, monitoring training and validation metrics. 
 
import os 
import numpy as np 
import cv2 
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import matplotlib.pyplot as plt 
import seaborn as sns 
from sklearn.metrics import confusion_matrix, classification_report 
from tensorflow.keras.preprocessing.image import ImageDataGenerator 
from tensorflow.keras import layers, models 
from tensorflow.keras.optimizers import Adam 
 
# Step 1: Data Preprocessing 
base_dir = 'mastitis_dataset'  # Adjust to your dataset location 
train_dir = os.path.join(base_dir, 'train') 
validation_dir = os.path.join(base_dir, 'validation') 
test_dir = os.path.join(base_dir, 'test') 
 
# Image Data Generators 
train_datagen = ImageDataGenerator( 
    rescale=1./255, 
    rotation_range=20, 
    width_shift_range=0.2, 
    height_shift_range=0.2, 
    shear_range=0.2, 
    zoom_range=0.2, 
    horizontal_flip=True, 
    fill_mode='nearest' 
) 
 
validation_datagen = ImageDataGenerator(rescale=1./255) 
test_datagen = ImageDataGenerator(rescale=1./255) 
 
# Load images 
train_generator = train_datagen.flow_from_directory( 
    train_dir, 
    target_size=(224, 224), 
    batch_size=32, 
    class_mode='binary'  # Assuming 2 classes: healthy and mastitis 
) 
 
validation_generator = validation_datagen.flow_from_directory( 
    validation_dir, 
    target_size=(224, 224), 
    batch_size=32, 
    class_mode='binary' 
) 
 
test_generator = test_datagen.flow_from_directory( 
    test_dir, 
    target_size=(224, 224), 
    batch_size=32, 
    class_mode='binary', 
    shuffle=False 
) 
 
# Step 2: Design and Train the CNN Model 
model = models.Sequential([ 
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(224, 224, 3)), 
    layers.MaxPooling2D(pool_size=(2, 2)), 
    layers.Conv2D(64, (3, 3), activation='relu'), 
    layers.MaxPooling2D(pool_size=(2, 2)), 
    layers.Conv2D(128, (3, 3), activation='relu'), 
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    layers.MaxPooling2D(pool_size=(2, 2)), 
    layers.Flatten(), 
    layers.Dense(128, activation='relu'), 
    layers.Dropout(0.5), 
    layers.Dense(1, activation='sigmoid')  # Binary classification 
]) 
 
# Compile the model 
model.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=['accuracy']) 
 
# Train the model 
history = model.fit( 
    train_generator, 
    validation_data=validation_generator, 
    epochs=10,  # Adjust based on your needs 
    steps_per_epoch=train_generator.samples // train_generator.batch_size, 
    validation_steps=validation_generator.samples // validation_generator.batch_size 
) 
 
# Step 3: Validate and Fine-tune the Model 
# Optionally, unfreeze some layers to fine-tune 
model.compile(optimizer=Adam(learning_rate=1e-5), loss='binary_crossentropy', metrics=['accuracy']) 
 
fine_tune_history = model.fit( 
    train_generator, 
    validation_data=validation_generator, 
    epochs=5,  # Further epochs 
    steps_per_epoch=train_generator.samples // train_generator.batch_size, 
    validation_steps=validation_generator.samples // validation_generator.batch_size 
) 
 
# Step 4: Test the Model’s Performance 
test_loss, test_accuracy = model.evaluate(test_generator, steps=test_generator.samples // 
test_generator.batch_size) 
print(f'Test Accuracy: {test_accuracy * 100:.2f}%') 
 
predictions = model.predict(test_generator) 
predicted_classes = (predictions > 0.5).astype("int32")  # Binary classification threshold 
true_classes = test_generator.classes 
 
# Confusion Matrix 
cm = confusion_matrix(true_classes, predicted_classes) 
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['Healthy', 'Mastitis'], yticklabels=['Healthy', 
'Mastitis']) 
plt.ylabel('Actual') 
plt.xlabel('Predicted') 
plt.title('Confusion Matrix') 
plt.show() 
 
# Classification Report 
print(classification_report(true_classes, predicted_classes, target_names=['Healthy', 'Mastitis'])) 
 
# Step 5: Deploy the Model 
model.save('mastitis_detection_model.h5') 
 
# Function to make predictions on new images 
def predict_image(image_path): 
    img = cv2.imread(image_path) 
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    img = cv2.resize(img, (224, 224)) 
    img = np.expand_dims(img, axis=0) / 255.0  # Rescale 
    prediction = model.predict(img) 
    predicted_class = 'Mastitis' if prediction[0] > 0.5 else 'Healthy' 
    return predicted_class 
 
# Example usage 
image_path = 'path_to_new_milk_image.jpg'  # Replace with actual image path 
result = predict_image(image_path) 
print(f'The predicted condition is: {result}') 
 

3. Validation and Fine-tuning the Model for Accuracy 
 
Validation:  
Validation dataset to assess model performance and adjust hyperparameters were used if needed. 
 
Fine-tuning:  
Unfreezing the layers for retraining or add regularization techniques to improve accuracy and prevent 
overfitting was performed.  
 

4. Testing the Model’s Performance on a Separate Dataset 
 
Evaluation: 
Model on a separate dataset and calculate performance metrics like accuracy, precision, recall, F1-score, and a 
confusion matrix to assess its effectiveness was tested.  
 

5. Deploying the CNN Model for Real-time Mastitis Recognition 
Model Saving: 
Trained model for future use was saved.  
 
Real-time Prediction:  
A prediction function for new images was implemented, indicating whether they are healthy or show signs of 
mastitis, and integrate it into a user-friendly application for veterinarians or farmers. 

13.4.4 Python Code for Livestock Health Monitoring using Voice Recognition 

A bovine vocal recognition system for health assessment use audio analysis to differentiate between healthy 
and sick vocalisations in cattle. The method commences with the collection of vocalisation datasets from both 
healthy and ill cattle, sourced from GitLab. The audio files undergo preprocessing to eliminate noise and 
extract pertinent information such as pitch, tone, and frequency. A machine learning model, such as Support 
Vector Machine (SVM) or deep learning algorithms, is taught to categorise vocalisations according to health 
issues. The method is certified for precision and may be utilised for real-time speech recognition, facilitating 
the early identification of stress, pain, or illness in animals by their vocal patterns. This device improves 
animal care and health management by delivering prompt notifications regarding potential health concerns.  
Summary of the procedures for assessing bovine health status by vocalisations: 
 

1. Collection of Bovine Vocalization Datasets 
 
Data Gathering: 
Audio recordings of bovine vocalizations from healthy and diseased animals were collected. Diverse dataset 
that captures various vocalization types and conditions were ensured.  
 

https://worldbiologica.com/


                                                             International Journal of Innovative Scientific Research, 2025, Vol. 3, Issue 1 

ISSN: 3008-5039 || © 2025 || Published by: World BIOLOGICA    55 

 
Fig. 29 Healthy Bovine voice Datasets Used To Train SVM Model For Bovine disease Detection 

 

 

 
Fig. 30 Unhealthy Bovine Voice Datasets Used To Train SVM Model For Bovine Disease Detection 

 
2. Preprocessing of Audio Data 

 
Cleaning: 
Noise and irrelevant segments from the audio recordings were removed.  
 
Feature Extraction: 
Audio signals into features using techniques like Mel-Frequency Cepstral Coefficients (MFCC), spectrograms, 
or pitch analysis to represent the vocalizations numerically. 
 
Normalization:  
Standardize the feature values to ensure uniformity in data distribution were converted.  
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3. Training of SVM Classifier 
 
Model Selection:  
Support Vector Machine (SVM) as the classification algorithm to distinguish between healthy and unhealthy 
vocalizations was used.  
 
Training:  
Dataset into training and testing sets was split, then SVM model on the training data using the extracted 
features was trained.  
 
Import os 
Import numpy as np 
Import librosa 
Import pandas as pd 
From sklearn import svm 
From sklearn.model_selection import train_test_split, cross_val_score 
From sklearn.metrics import classification_report, confusion_matrix 
Import matplotlib.pyplot as plt 
Import seaborn as sns 
 
# Step 1: Collection of Bovine Vocalization Datasets 
Def load_data(data_dir): 
    Labels = [] 
    Features = [] 
     
    # Iterate through each folder (healthy/diseased) 
    For label in os.listdir(data_dir): 
        Label_dir = os.path.join(data_dir, label) 
         
        # Process each audio file in the folder 
        For file in os.listdir(label_dir): 
            If file.endswith(‘.wav’): 
                Audio_path = os.path.join(label_dir, file) 
                # Step 2: Preprocessing of Audio Data 
                Y, sr = librosa.load(audio_path, sr=None) 
                 
                # Step 3: Feature Extraction (e.g., MFCC) 
                Mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13) 
                Mfccs_mean = np.mean(mfccs.T, axis=0)  # Mean of MFCCs 
                Features.append(mfccs_mean) 
                Labels.append(label) 
     
    Return np.array(features), np.array(labels) 
 
# Load the data 
Data_dir = ‘dataset’  # Adjust to your dataset location 
X, y = load_data(data_dir) 
 
# Step 4: Split the dataset into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y) 
 
# Step 5: Training of SVM Classifier 
Svm_model = svm.SVC(kernel=’linear’)  # You can also try ‘rbf’ or other kernels 
Svm_model.fit(X_train, y_train) 
 
# Step 6: Evaluation of Performance 
Y_pred = svm_model.predict(X_test) 
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# Print classification report and confusion matrix 
Print(“Classification Report:”) 
Print(classification_report(y_test, y_pred)) 
 
# Confusion Matrix 
Cm = confusion_matrix(y_test, y_pred) 
Sns.heatmap(cm, annot=True, fmt=’d’, cmap=’Blues’, xticklabels=np.unique(y), yticklabels=np.unique(y)) 
Plt.ylabel(‘Actual’) 
Plt.xlabel(‘Predicted’) 
Plt.title(‘Confusion Matrix’) 
Plt.show() 
 
# Step 7: Validation using Cross-Validation 
Cv_scores = cross_val_score(svm_model, X, y, cv=5)  # 5-fold cross-validation 
Print(f”Cross-Validation Scores: {cv_scores}”) 
Print(f”Mean Cross-Validation Score: {np.mean(cv_scores):.2f}”) 
 
# Step 8: Deploy for Disease Recognition 
# Function to classify new vocalization 
Def classify_vocalization(audio_path): 
    Y, sr = librosa.load(audio_path, sr=None) 
    Mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13) 
    Mfccs_mean = np.mean(mfccs.T, axis=0) 
    Prediction = svm_model.predict([mfccs_mean]) 
    Return prediction[0] 
 
# Example usage for prediction 
New_audio_path = ‘path_to_new_vocalization.wav’  # Replace with actual audio path 
Result = classify_vocalization(new_audio_path) 
Print(f’The predicted condition is: {result}’) 
 

4. Evaluation of Performance 
 
Metrics Calculation: 
Model’s performance on the test set using metrics such as accuracy, precision, recall, and F1-score to gauge its 
effectiveness in classification was accessed.  
 

5. Validation Using Cross-Validation 
 
Cross-Validation: 
k-fold cross-validation was implemented to ensure that the model is robust and generalizes well to unseen 
data by evaluating its performance across multiple subsets of the dataset.  
 

6. Deployment for Disease Recognition 
 
Model Deployment:  
The trained SVM classifier into a real-time or batch processing system for monitoring bovine vocalizations, 
enabling automatic disease recognition based on vocal patterns were integrated.  
 

13.5 Results & Discussion 

The paper emphasises the increasing importance of AI-driven technologies such as machine learning, 
computer vision, and speech recognition in enhancing herd health, productivity, and welfare. These tools 
provide real-time monitoring and yield actionable insights for the early detection of diseases, including 
mastitis, digestive issues, and respiratory conditions. These systems employ faecal, milk, and vocalisation data 
to automate health monitoring and minimise the necessity for intrusive procedures, resulting in enhanced 
herd management efficiency.  
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Nonetheless, numerous hurdles must be resolved for these technologies to achieve optimal efficacy. The 
quality and availability of data are essential for guaranteeing the accuracy and dependability of these systems. 
Inconsistent or incomplete datasets may result in erroneous projections, hence impacting herd health. 
Furthermore, the integration of current agricultural infrastructure, including sensors and communication 
systems, continues to be a worry for numerous farmers, especially in resource-limited settings. 

Future improvements in AI algorithms and the implementation of cloud-based or edge computing systems 
are poised to enhance the scalability and accessibility of these tools. Furthermore, integrating a broader range 
of datasets encompassing multiple environmental and genetic variables could improve the accuracy of health 
monitoring systems, rendering them more responsive to varying herd conditions. Equipping farmers with the 
requisite skills to handle and comprehend these AI-driven systems will be essential for the extensive 
deployment of CogniHerd  technology.  

In summary, although CogniHerd  technologies possess transformative potential for herd management, 
continuous research, data enhancement, and user education are crucial to effectively actualise their 
advantages. 

13.5.1 Real Time Livestock Temperature Monitoring Results 

A bovine temperature monitoring system consistently records cattle temperature and disseminates the data at 
regular intervals, emphasising the early identification of health concerns. The system assesses temperature 
using sensors, and if the measurements are within the normal range (generally 38°C to 39.5°C for cattle), it 
categorises the cattle as healthy, exhibiting no indications of illness. Irrespective of health classification, the 
system transmits temperature data every 5 seconds to a MQTT broker or central server for real-time 
monitoring. This facilitates ongoing monitoring of cow health, enabling prompt identification and 
management in the event of any temperature irregularities. 
 

 
Fig. 31 Implementation of MQTT Protocol For Results Publication 

 

 
Fig. 32 Results Publication of Bovine Temperature Using MQTT Protocol 
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13.5.2 Faecal Identification for Disease Monitoring in Livestock Results  

A bovine faecal identification system for disease recognition use a trained model to classify faecal 
photographs, differentiating between healthy and unhealthy states based on visual attributes. Upon 
processing and training a ResNet152V2 model using labelled datasets, the outcomes can be classified as 
follows: 
 
Healthy Samples: Faecal pictures that exhibit a well-formed structure, consistent colour, and texture are 
categorised as healthy. These samples demonstrate normal digestion and exhibit no indications of illness. 
 

 
Fig. 33 Accurate Prediction Of Healthy Bovine Faecal Matter Using Resnet152v2 Model 

 
Unhealthy Samples: Faecal samples exhibiting anomalies, including watery consistency, discolouration, or the 
presence of mucus or blood, are categorised as unhealthy. These traits indicate potential digestive difficulties, 
infections, or other health complications.  
 

 
Fig. 34 Accurate Prediction of Unhealthy Bovine Faecal Matter Using Resnet152v2 Model 

 
The conclusion relies on the model’s capacity to identify these discrepancies, facilitating early disease 
identification and prompt response to preserve livestock health. 

13.5.3 Bovine Mastitis Detection Results  

A bovine mastitis detection system utilises a model to analyse milk photographs, distinguishing between 
healthy and sick samples by visual indicators. Upon training a Convolutional Neural Network (CNN) model 
with labelled datasets, the outcomes can be categorised as follows:  
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Healthy Samples: Images depicting pristine, smooth milk are categorised as healthy. These photos display 
typical milk attributes, devoid of any obvious indications of infection, inflammation, or coagulation.  
 

 
Fig. 35 Accurate Prediction of Healthy Bovine Milk Datasets Using CNN Model 

 
Unhealthy Samples: Milk samples exhibiting visible coagulants, clumps, or uneven textures are deemed 
unhealthy. These characteristics are symptomatic of mastitis, wherein infection alters milk composition, 
including the development of coagulants. 
 

 
Fig. 36 Accurate Prediction of Unhealthy Bovine Milk Datasets (coagulation visible) Using CNN Model 

 
The system’s conclusion relies on the trained model’s capacity to identify visual discrepancies, hence 
facilitating successful categorisation for the early identification of mastitis and enhancing dairy herd health 
management. 

13.5.4 Disease Detection using Voice Identification Results  

A bovine voice recognition system for health monitoring utilises a trained model to classify vocalisations, 
differentiating between healthy and ill calves based on audio characteristics. Upon processing and training 
with a Support Vector Machine (SVM) or deep learning model on labelled datasets, the outcomes are as 
follows: 
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Healthy Vocalisations: Normal voice patterns, defined by consistent pitch, tone, and frequency, are categorised 
as healthy. These sounds signify that the cattle are in a secure, stress-free state.  
 

 
Fig. 37 Accurate Prediction of Unhealthy Bovine Talk Datasets Using SVM Model 

 
Unhealthy Vocalisations: Vocalisations characterised by irregularities, including pitch variations, extended 
distress calls, or atypical frequency shifts, are deemed unhealthy. These changes may signify pain, stress, or 
illness, including respiratory problems or discomfort.  
 

 
Fig. 38 Accurate Prediction of Healthy Bovine Talk Datasets Using SVM Model 

 
The technology proficiently identifies these vocal patterns, facilitating early identification of health issues and 
prompt actions to enhance animal welfare. 

13.5.5 Models Accuracy 

The AI-IoT livestock health monitoring system you created attained an accuracy rate of 0.9 in forecasting 
health anomalies in cattle. This elevated accuracy corresponds with findings from other AI-based livestock 
monitoring systems, which frequently indicate accuracy levels between 85% and 95%, contingent upon the 
particular application. Research on predictive algorithms for disease identification in cattle, including machine 
learning models for bovine mastitis detection, indicates comparably high accuracy rates, particularly when 
integrating diverse data sources such as temperature, movement, and sound into the analysis (Mitsunaga, TM. 
Et al., 2023; Kumar, Abhishek, et al., 2023). This signifies that our system’s accuracy is on par with the industry 
standard for AI-IoT solutions in animal health. 
 

1. Accuracy: Evaluates how accurate the model’s predictions are overall. 
Accuracy = TP + TN/TP + TN + FP + FN 
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2. Precision: Percentage of accurate positive predictions made for a specific response class. 
Precision = TPA/TPA + FPA 

 
3. Recall: Evaluates the model’s accuracy in identifying real positive cases. 

RecallA = TPA/TPA + FFP 
 

4. F1-Score: The harmonic mean of precision and recall.  
F1A = 2× PrecisionA × RecallA/PrecisionA + RecallA 

 

 
Fig. 39 Typical Diagram Of Confusion Matrix 

 

 

 
Fig. 40 Computation of Confusion Matrix showing CogniHerd  System models accuracy of 90% 

 

 
Fig. 41 Training & Validation Loss Plot Against Epochs Used 
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Fig. 42 Training & Validation Accuracy Plot Against Epochs Used 

13.5.6 Results Comparison with Literature 

In comparison to analogous systems in the literature, the outcomes of your project exhibit both congruence 
and opportunities for enhancement:  
 
A study conducted by Khan, Mohammad et al. (2024) demonstrated that an IoT-based system for monitoring 
dairy cow health, utilising temperature and motion sensors, attained an accuracy rate of 0.87 in identifying 
early indicators of mastitis, which is marginally inferior to our approach.  
 
A subsequent study by S. Nithirajan (2024) employed a multi-sensor methodology utilising AI algorithms and 
machine learning to detect lameness in dairy cows through accelerometry data, attaining an accuracy of 0.9, 
which is directly comparable to our effort.  
 
Likewise, another study included a dataset of 1,200 photos depicting 15 different disorders. The researchers 
attained a remarkable accuracy rate of 0.97 by extracting features from these photos and utilising the CNN for 
pattern recognition, surpassing our system’s performance. (Li, Zhang, et al., 2023).  
 
The primary distinguishing element of our system is the integration of many sensor types (temperature, audio, 
and camera) coupled with real-time analysis through machine learning techniques such as CNN, SVM, and 
ResNet152V2. This multi-modal strategy improves the identification of intricate health problems by utilising 
several data streams, rendering your system more adaptable than those concentrating on simply one or two 
characteristics. 
 

Table 4 Comparison of Accuracy and Features of Livestock Health Monitoring Systems from 
Literature with our Multi-Sensor Approach 

Study System/Methodology 
Accuracy 

(%) 
Comparison to our Systems 

(CogniHerd ) 

Khan, Mohammad et 
al., 2024 

IoT-based system using temperature 
and motion sensors to detect early 
indicators of mastitis. 

0.87 
Comparable to our system’s 
accuracy, with similar capabilities in 
detecting specific health issues. 

S. Nithirajan, 2024 
Multi-sensor methodology with AI and 
machine learning to detect lameness in 
dairy cows using accelerometry. 

0.90 
Comparable to our system’s 
accuracy, with similar capabilities in 
detecting specific health issues.  

Li, Zhang, et al., 
2023 

CNN-based system using a dataset of 
1,200 images depicting 15 disorders 
for pattern recognition. 

0.97 

Outperforms our system in image-
based detection, but lacks multi-
sensor integration and real-time 
analysis. 

Our System 
(CogniHerd )  

Integration of temperature, audio, and 
camera sensors with real-time analysis 
using CNN, SVM, and ResNet152V2. 
Accuracy: Higher in adaptability 

Higher in 
adaptability 

Combines multiple sensor types and 
machine learning techniques, 
providing a more flexible and 
comprehensive solution for 
identifying complex health issues. 
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13.6 Implications for Livestock Health 

13.6.1 Early Detection 

The amalgamation of AI and IoT in animal health monitoring markedly improves the early identification of 
health problems. Through the ongoing surveillance of critical health indicators, including temperature, 
behaviour, and auditory patterns, the system can identify anomalies that may signify the early stages of 
diseases prior to the manifestation of clinical symptoms. Early detection can avert serious illnesses and 
diminish treatment expenses by facilitating prompt actions. Pandey, Dev, and Mishra (2024) assert that early 
diagnosis via IoT and AI systems can decrease veterinary expenses by as much as 30% on dairy farms by 
preventing the progression of advanced disease stages. Džermeikaitė et al. (2023) indicated that early 
intervention systems in cow health could diminish disease transmission, decrease mortality rates, and 
enhance overall herd wellbeing. 

13.6.2 Labor Efficiency 

The automation of health monitoring with AI and IoT diminishes the necessity for continuous human 
oversight, facilitating a more efficient allocation of agricultural labour. Farm personnel can utilise real-time 
data analytics from sensors and machine learning algorithms instead of conducting daily manual inspections 
of cattle. This transition results in enhanced resource utilisation and labour distribution on farms, as fewer 
personnel are required for regular health assessments. Research conducted by AlZubi Ali Ahmad and Al-Zu’bi 
Maha (2023) indicates that farms employing AI-IoT systems might save labour expenses by up to 40% through 
the automation of regular chores, including temperature monitoring and behaviour tracking. This efficiency 
liberates labour for other critical agricultural tasks while upholding superior standards of animal welfare. 

13.6.3 Farm Management 

The amalgamation of AI and IoT technologies enhances health outcomes and optimises farm management 
through the provision of actionable knowledge. Real-time monitoring technologies empower farmers to make 
informed decisions on animal health, nutrition, and breeding. These technologies enhance the accuracy of 
interventions, leading to improved livestock management and optimised breeding cycles. The capacity to 
forecast oestrus cycles in sows and assess reproductive health with AI algorithms, as demonstrated in the case 
study (Sharifuzzaman, M. et al., 2024), has been proven to enhance breeding success rates by 20%. This 
further illustrates how AI-IoT technologies may markedly improve overall agricultural productivity and 
operational efficiency.  

Integrating these technology enables farms to attain enhanced productivity, improved health outcomes, 
and more sustainable practices, whilst decreasing the operating expenses linked to conventional health 
monitoring systems. 

 
Fig. 43 Basic Implications For Livestock Health Monitoring System Using Artificial Intelligence and Internet of Things 
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14. Benefits and Challenges 

14.1 Benefits of AI-IoT Integration 

The amalgamation of AI and IoT technology in livestock health monitoring offers several benefits, significantly 
altering the management of herds by farmers. A primary advantage is enhanced illness prevention. AI-IoT 
systems perpetually assess animal health using biometric sensors and wearables, facilitating the early 
identification of health problems prior to their progression into severe illnesses. This preemptive strategy 
enhances animal welfare and reduces the economic repercussions of illness outbreaks (Mahato, Shubhangi & 
Neethirajan, Suresh. 2024).  

A significant benefit is the decrease in labour expenses. Conventional cattle management frequently 
necessitates substantial manual oversight, which can be laborious and time-consuming. AI-IoT technologies 
facilitate the automation of data gathering and analysis, enabling farmers to concentrate on more important 
activities. These tools offer real-time alerts and analytics, enabling farmers to promptly tackle health issues, 
optimise operations, and eventually improve productivity (Neethirajan, S. 2024). 

Real-time insights provide another essential advantage. AI-IoT systems aggregate extensive data and 
interpret it instantaneously, delivering farmers prompt insights regarding animal health, behaviour, and 
environmental factors. This constant stream of information enables farmers to make prompt and educated 
decisions, enhancing overall herd management. For instance, real-time data regarding a cow’s feeding 
behaviour can enable farmers to modify their diets or feeding schedules, so assuring optimal nutrition and 
growth (El Moutaouakil, Khalid & Noureddine, Falih. 2024).  

The integration of AI and IoT significantly enhances decision-making capabilities. Utilising predictive 
analytics and machine learning algorithms, these systems may discern trends and provide interventions 
customised for individual animals or groups within a herd. This data-driven methodology enhances animal 
health outcomes and facilitates improved resource management, resulting in greater efficiency and 
sustainability in agricultural practices (Mahadasa, Ravikiran. 2019). 

14.2 Challenges and Limitations 

Notwithstanding the numerous advantages, the implementation of AI-IoT systems presents several problems. 
A major worry is data privacy. The ongoing accumulation of sensitive health and behavioural data prompts 
enquiries around data ownership and its utilisation. Adhering to data privacy legislation is crucial for 
sustaining trust between farmers and technology providers (Lo’ai Tawalbeh et al., 2020). 

Cybersecurity threats present a significant issue. IoT devices are susceptible to hackers and unauthorised 
access, thereby jeopardising the integrity of agricultural operations. Safeguarding against cyber threats 
necessitates investment in comprehensive security protocols and ongoing system surveillance (Adewuyi, 
Adeleye. et al., 2024).  

Moreover, the necessity for infrastructure imposes constraints, particularly in remote regions where 
internet connectivity may be inconsistent or nonexistent. Consistent connectivity is necessary for the effective 
functioning of AI-IoT systems. The infrastructural deficit may impede adoption in areas where it is most 
essential (Nižetić, S. et al., 2020).  

The expense of deploying AI-IoT systems can be excessive for numerous farmers, especially those 
operating on a small scale. The initial capital outlay for technology, along with continuous maintenance and 
updates, can be a substantial obstacle. To address this difficulty, support measures, such as grants or 
subsidies, are necessary to promote adoption and ensure that farmers can profit from these improvements 
(Bhangar, Nadir & Kashem, Abul. (2023). 
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Fig. 44 Benefits & Challenges of Artificial Intelligence and Internet of Things Integration 

 
In conclusion, although the amalgamation of AI and IoT provides significant advantages for animal health 
monitoring, it is imperative to tackle the related problems to fully harness the potential of these technologies. 

15. Ethical Considerations IN AI-Driven Livestock Monitoring 

15.1 Animal Welfare and Data Privacy. 

With the growing integration of AI and IoT technology in livestock monitoring, ethical concerns around animal 
welfare and data privacy have surfaced as significant difficulties. The principal objective of employing these 
technologies is to improve animal welfare by fostering healthier and more productive cattle. AI-IoT systems 
can provide early disease diagnosis and response, allowing farmers to proactively address health issues and 
reduce suffering. It is essential to guarantee that the use of these technologies does not jeopardise the welfare 
of the animals they aim to safeguard (Neethirajan, Suresh. 2023).  

An ethical worry is the possible over-reliance on technology, which may result in the disregard of the 
human elements of animal care. Although constant sensor monitoring yields critical data on animal health, it 
cannot substitute for the deep comprehension that seasoned farmers have of their cattle. Farmers must adopt 
a balanced strategy, integrating technical insights with their expertise and intuition on animal behaviour and 
welfare. Therefore, it is ethically essential to utilise AI-IoT systems as instruments to enhance, rather than 
supplant, human care and discernment (Neethirajan, Suresh. 2024).  

Furthermore, the data privacy concerns related to the acquisition of sensitive health and behavioural 
information pose significant ethical dilemmas. The data produced by IoT devices encompasses comprehensive 
information regarding animal health, which may be deemed proprietary or sensitive. Concerns emerge around 
the ownership of this data, its storage, and its utilisation. There exists a possibility of data being 
misappropriated or abused by third parties, such insurance firms or corporate entities, resulting in ethical 
dilemmas about permission and ownership (Jahanzeb, Shahi, et al., 2022). Farmers and technology suppliers 
must implement explicit data governance policies to safeguard privacy and enhance openness concerning data 
utilisation. 

15.2 Human-Livestock Interaction 

The growing automation of livestock monitoring via AI-IoT systems may diminish human engagement with 
animals, thereby impacting farm dynamics and animal welfare significantly. Conventional agricultural 
methods typically entail frequent direct engagement between farmers and their livestock, cultivating a robust 
relationship advantageous to both entities. This contact allows farmers to monitor behavioural changes, 
evaluate health issues, and gain a comprehensive awareness of their animals’ requirements. Zulkifli, I. (2013)  

Nevertheless, the implementation of automated monitoring systems poses a risk of farmers being 
excessively dependent on technology, resulting in diminished direct interaction with their cattle. This 
transition may create a disconnection between farmers and their livestock, perhaps impairing the farmers’ 
capacity to detect nuanced behavioural alterations that signify health concerns. Studies indicate that animals 
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flourish in settings characterised by regular human interaction, which can reduce stress and improve overall 
well-being. Yerbury, R. M., & Lukey, S. J. (2021). Thus, it is imperative to sustain a balance between technology 
and people interaction to prioritise animal welfare.  

Furthermore, the dynamics of human-livestock relationships may evolve as automation alters the roles of 
farmers. The conventional hands-on farming method may transition to more managerial positions centred on 
data interpretation and decision-making informed by AI insights. This transition may transform the social 
structure of agricultural communities, since those previously engaged in animal husbandry may 
predominantly focus on technology. Neethirajan, Suresh. 2023.  

To address these ethical dilemmas, it is imperative to advocate for a comprehensive strategy in AI-IoT 
integration that emphasises both animal welfare and human engagement. This can be accomplished by 
underscoring the significance of sustaining consistent contacts between farmers and cattle, especially within 
automated systems. Training programs for farmers must encompass instruction on the appropriate 
integration of technology, while simultaneously emphasising the importance of personal care and attention to 
their livestock. Neethirajan, Suresh. (2023).  

The ethical implications of AI-driven livestock monitoring are complex and require cautious navigation. 
By emphasising animal welfare, safeguarding data privacy, and fostering significant human-livestock 
connections, the agricultural sector may leverage the advantages of AI-IoT systems while adhering to ethical 
standards that enhance the wellbeing of both animals and farmers. 

 

 
Fig. 45 Ethical Considerations In AI Driven Livestock Health Monitoring System (CogniHerd  System) 

16. Future Directions and Innovations 

16.1 Advanced AI Techniques 

The integration of AI in cattle health monitoring is advancing, with various sophisticated AI techniques 
emerging that promise to improve the effectiveness and efficiency of these systems. One strategy is swarm 
intelligence, inspired by the collective behaviour of social creatures like bees, ants, and flocks of birds. Swarm 
intelligence systems can analyse extensive data from several sources, enabling decentralised decision-making 
that emulates natural processes. This method is especially advantageous for monitoring extensive herds, since 
it facilitates real-time analysis and swift adaptability to evolving conditions (Wassie, Awoke. Et al., 2024).  

A significant accomplishment is the creation of neural networks, particularly deep learning models, which 
have demonstrated exceptional efficacy in image and pattern recognition tasks. These models can be taught to 
analyse intricate datasets produced by IoT devices, such as video streams from cameras observing animal 
behaviour. Neural networks can facilitate early diagnosis and intervention efforts by spotting patterns that 
may signify health concerns. Moreover, the emergence of explainable AI (XAI) is tackling the issue of 
transparency in AI decision-making. As livestock producers increasingly depend on AI-generated insights, it is 
essential that these systems offer comprehensible explanations for their predictions and suggestions. 
Explainable Artificial Intelligence (XAI) can foster confidence between farmers and AI systems, enabling 
farmers to make informed decisions based on the presented data (Božić, Velibor. (2023). 
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16.2 IoT Evolution and 5G Connectivity 

The advancement of IoT devices is crucial for the future of cattle health monitoring. Progress in sensor 
technology is resulting in the creation of smaller, more economical, and more energy-efficient gadgets. These 
advanced sensors can continually monitor multiple health measures, including heart rate, temperature, and 
activity levels, offering farmers an extensive overview of their livestock’s health. Awasthi, Amruta et al. (2020).  

An essential facilitator of improved IoT functionalities The implementation of 5G networks. The rapid, 
low-latency connectivity provided by 5G will greatly enhance the capacity to send substantial data quantities 
from IoT devices in real-time. This innovation will enable instantaneous connection between devices, 
permitting prompt data analysis and notifications. For example, when an animal exhibits signs of discomfort, 
the IoT system can promptly notify the farmer, facilitating a swift reaction to potential health concerns. (Jun, 
Liu, et al., 2023). Furthermore, the extensive network capacity of 5G will facilitate the concurrent connection 
of several devices, hence augmenting the scalability of IoT systems in extensive livestock operations.  

The integration of modern IoT devices with 5G connectivity will facilitate more complex applications, 
including remote monitoring and automated interventions. Farmers may utilise drones outfitted with IoT 
sensors to oversee animal health across extensive fields, while AI algorithms assess the gathered data to 
identify early indicators of illness or distress. This degree of automation can markedly decrease labour 
expenses and improve the overall efficacy of agricultural management. Guo, Xianhai. 2021. 

16.3 Personalized Livestock Healthcare 

The future of livestock health monitoring is increasingly orientated towards personalised healthcare for 
animals. The incorporation of AI technologies can provide more customised health therapies based on the 
genetic and environmental data of individual animals. Through the analysis of genetic data, farmers can gain 
insights into the susceptibility of particular animals to specific diseases or health concerns. This knowledge 
can inform breeding decisions and health management measures, ensuring that each animal receives 
treatment tailored to its own genetic composition (Youngjoon, Cho, & Jongwon, Kim. 2023). 

Environmental conditions significantly influence animal health. Artificial intelligence systems can evaluate 
data from Internet of Things devices that assess environmental parameters including temperature, humidity, 
and feed quality. By integrating this data with individual health measurements, farmers may develop tailored 
health regimens that account for both genetic predispositions and environmental factors. An animal 
genetically prone to respiratory difficulties may benefit from tailored housing conditions or nutritional 
modifications to reduce hazards (Hu G, Do DN, Grey J, Miar Y. 2020). 

The possibilities for individualised cattle healthcare surpass mere illness avoidance. Artificial intelligence 
can assist in refining feeding protocols according to specific weight gain trends and nutritional requirements, 
therefore improving growth performance and output. With the agricultural sector’s growing emphasis on 
sustainability and efficiency, tailored strategies for livestock health are expected to become essential to 
contemporary farming methods. Singh, Amandeep, et al., 2023  
In summary, the future of AI-driven livestock health monitoring is set for substantial progress through the 
implementation of cutting-edge AI methodologies, the growth of IoT technology, and the transition towards 
individualised healthcare. These advancements will improve animal welfare and farm productivity while 
facilitating more sustainable and efficient farming operations. 
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Fig. 46 Future Directions & Innovations in CogniHerd  System 

17. Conclusion 

The amalgamation of AI and IoT technology in animal health monitoring signifies a substantial progression in 
the agricultural domain. Present applications exhibit their capacity to augment disease diagnosis, promote 
animal welfare, and optimise farm management via real-time data analysis and automated interventions. 
Systems such as CogniHerd  illustrate the integration of these technologies to furnish farmers with actionable 
insights, facilitating more informed decision-making and promoting healthier livestock populations. 
Notwithstanding these achievements, numerous gaps persist in the existing research environment. 
Significantly, additional innovation is required to create economical and scalable solutions that may be 
broadly embraced, especially by smallholder farmers. Furthermore, research must prioritise the improvement 
of interoperability between AI and IoT systems to guarantee seamless integration across various platforms 
and devices. Ethical problems, such as data privacy and the effects of automation on human-animal 
relationships, must be addressed to cultivate trust and guarantee the responsible deployment of these 
technologies. A cooperative strategy among researchers, farmers, and technology suppliers is crucial to 
advance and realise the whole capabilities of AI and IoT in cattle health monitoring. 
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